

Kairos: Building Cost-Efficient **Machine Learning Inference Systems with Heterogeneous Cloud Resources**

supreme moment; a crucial time into which a document is spoken.

Baolin Li, Siddharth Samsi, Vijay Gadepally, Devesh Tiwari

Kairos Executive Summary

A high-throughput ML inference system that is effective under QoS and cost budget constraints

Explores Two Important Questions

Is heterogeneity in hardware always beneficial for building high-performance ML inference services?

How to provision an effective heterogenous ML inference system and distribute ML inference queries on them?

ML-based services are deployed in cloud datacenters with heterogeneous resources

NVIDIA to Bring AI to Every Industry, CEO Says

From AI training to deployment, semiconductors to software libraries, systems to Jensen Huang outlined how a new generation of breakthroughs will be put at the

🔿 Meta Al

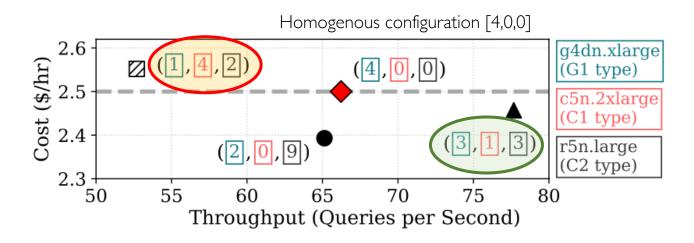
Hardware

MTIA v1: Meta's first-generation AI inference accelerator

Google Cloud unveils world's largest publicly available ML hub with Cloud TPU v4, 90% carbon-free energy

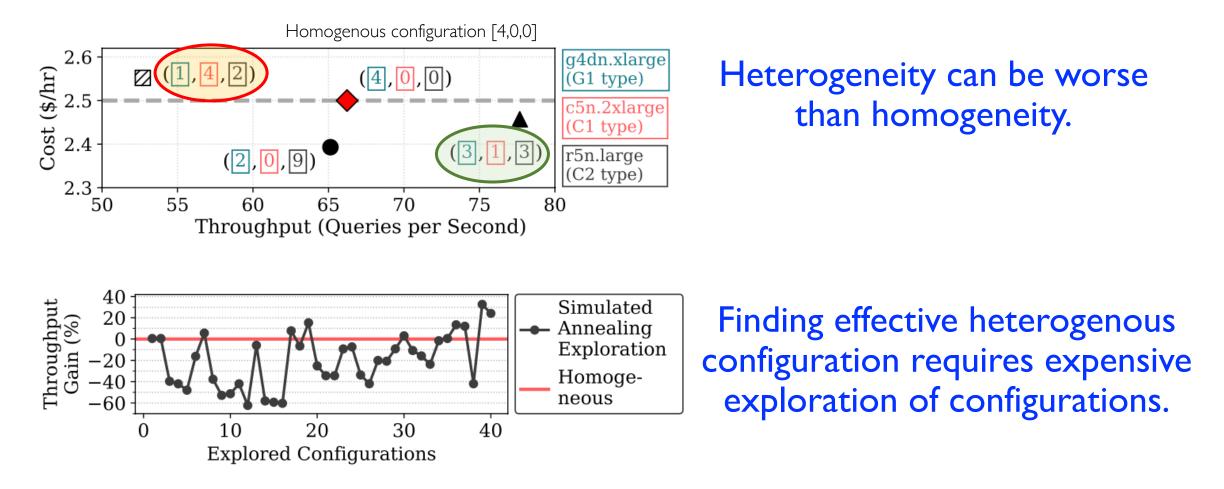
Announcing AWS Inferentia: Machine Learning Inference Chip

... but, exploiting heterogeneity optimally for ML inference serving is challenging!



Heterogeneity can be worse than homogeneity.

... but, exploiting heterogeneity optimally for ML inference serving is challenging!



Rich Literature of ML Inference Serving

S ³ DNN: Supervised Streaming and Schedulin	Serving DNNs like Clockwork: Performance Predictability from the Bottom Up			
GPU-Accelerated Real-Time DNN Worklos	a Max Planck	Scrooge: A Cost-Effective Deep Learning Inference		
TetriSched: global rescheduling with adaptiv	- 1	System		
in dynamic heterogeneous cluster		LLAMA: A Heterogeneous & Serverless Framework for		
Pipelined Data-Parallel CPU		Auto-Tuning Video Analytics Pinelines		
Multi-DNN Real-T	ime Inferent			
Yecheng Xiang and Hye	oseung Kim	Erancisco Romero* Mark Zhao* DeepRecSys: A System for Optimizing End-To-End		
Paragon: QoS-Aware Scheo	duling for Hetero	At-Scale Neural Recommendation Inference		
Christina Delimi	trou Christos Kozy			
Stanford Universit cdel@stanford.ee	y Stanford Unive	Udit Gupta ^{1,2} , Samuel Hsia ¹ , Vikram Saraph ² , Xiaodong Wang ² , Brandon Reagen ² ,		
		¹ Harvard University ² Facebook Inc.		

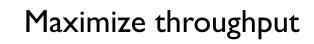
Why are existing approaches not sufficient or optimal?

	Inference QoS	Through- put	Cost	Query Mapping	Proactive in Heterogeneity	No Online Exploration	Miscellaneous Notes
Paragon [10]	×	~	×	~	×	×	Requires prior data for training
TetriSched [11]	×	×	×	~	×	~	Supports user-based reservation
S ³ DNN [13]	~	✓	×	~	×	~	Uses supervised CUDA stream
DART [14]	~	~	×	~	×	×	Profiles layers and applies parallelism
Scrooge [15]	~	✓	~	×	×	×	Chain execution of media applications
Ribbon [16]	~	~	~	×	~	×	Bayesian Optimization for allocation
DeepRecSys [17]	~	✓	×	~	×	×	Schedules using profiled threshold
Clockwork [18]	~	~	×	~	×	~	Consolidates latency for predictability
Kairos	v	~	~	v	~	~	Full heterogeneity support

Prior state-of-the-art solutions do not proactively exploit heterogeneity for cost and performance-effectiveness, incur high overhead during heterogeneity exploration, and suffer from sub-optimal inference query distribution/dispatching.

Kairos Goals and Key Ideas

Goals



Meet cost budget

Meet Quality-of-service (QoS)

Fast convergence

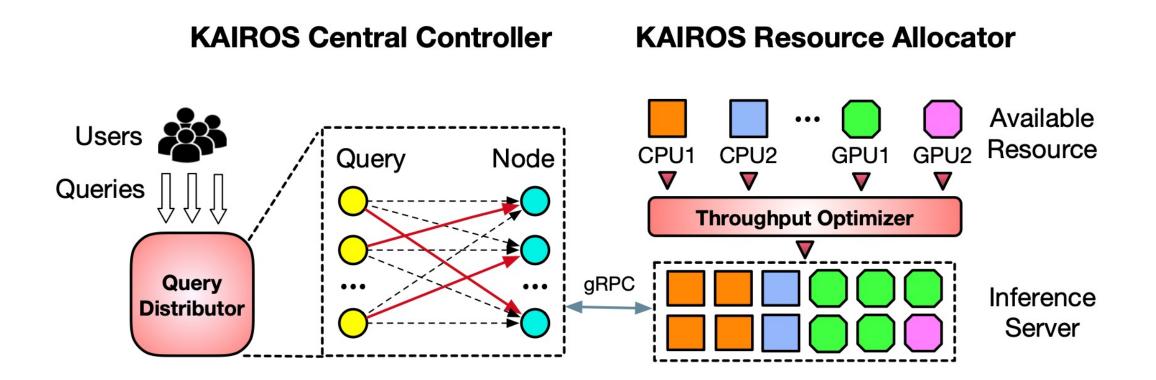
Heterogeneity-aware Query Dispatching Mechanism

Given heterogeneous hardware resources, a novel policy to optimally distribute the inference queries to the heterogenous hardware, in a QoS- and throughput-aware fashion

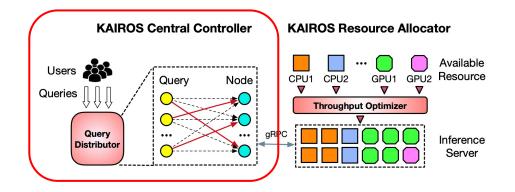
Finding Near-optimal Heterogenous Configuration without Online Exploration

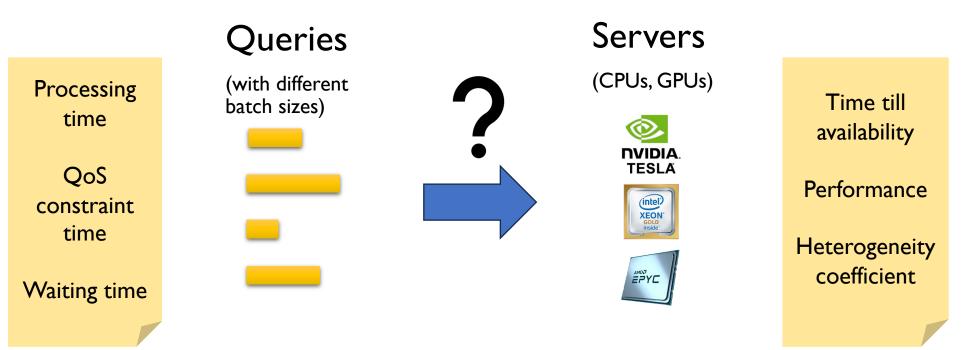
Given a query distribution policy, design an optimizer to quickly find a near-optimal heterogeneous hardware configuration under cost budget

Kairos System Overview



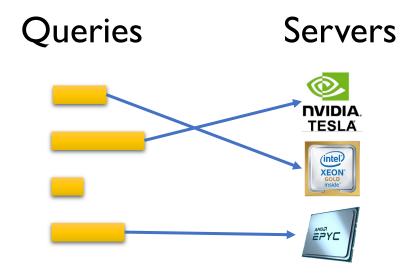
Kairos' Inference Query Dispatcher





Heterogeneity coefficient: measures how important a hardware instance is to the system

Formulating Query Distribution as Bipartite Graph Matching Problem



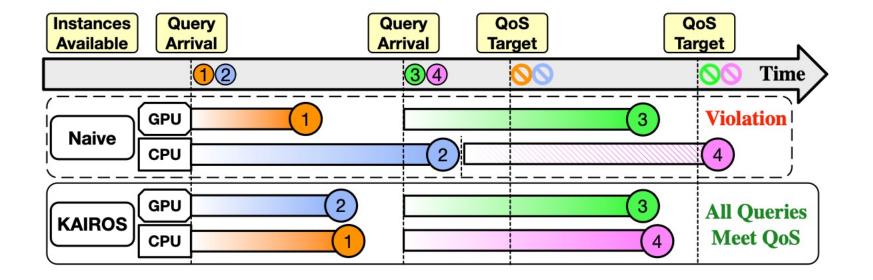
Kairos minimizes resource usage to provide max slack time for the future queries

Table 2: Query distribution optimizer parameters.

List	Description				
L _{i,j}	Time needed to finish serving Q_i on instance I_j from t_0 .				
m	Number of queries at time t_0 .				
n	Number of instances in the configuration.				
C_j	Heterogeneity coefficient for instance I_j .				
T _{qos}	QoS target latency.				
Wi	Query Q_i 's time spent waiting in queue before t_0 .				
P _{i,j}	Query-to-instance pairing/assignment matrix.				

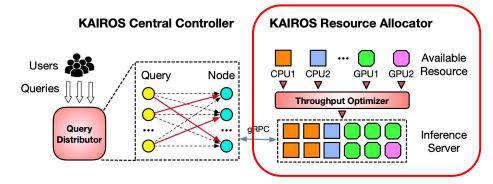
$$\min_{P} \sum_{i=1}^{m} \sum_{j=1}^{n} C_{j}(L_{i,j}) P_{i,j} \qquad \text{Edge cost}$$
s.t. $\forall i, j, \quad (L_{i,j} + W_i) P_{i,j} \leq T_{qos},$
 $\forall i, j, \quad \sum_{i=1}^{m} P_{i,j} \leq 1, \sum_{j=1}^{n} P_{i,j} \leq 1,$
 $\sum_{i=1}^{m} \sum_{j=1}^{n} P_{i,j} \geq \min\{m, n\}$

Intuition behind Kairos' query dispatcher



Kairos matches higher speedup queries to more powerful devices to create more slack time for the future – resulting in lower chance of QoS violation

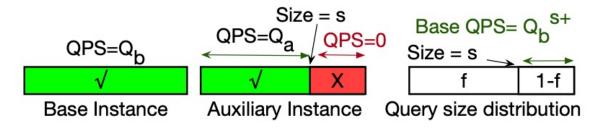
Kairos Resource Allocator



Key idea: rank heterogeneous resource configurations using approximation. No online evaluation!

Classify the resources as base type or auxiliary type

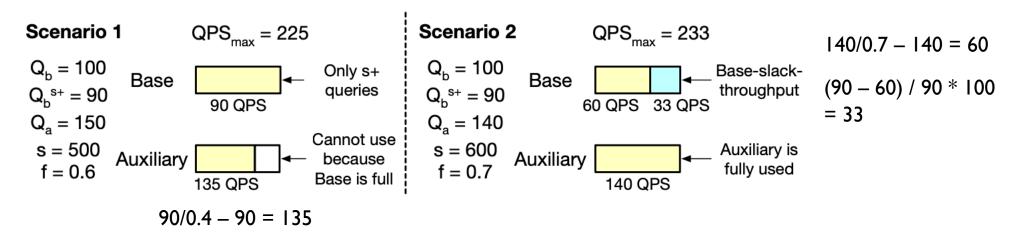
- Base instance type: most performant type, can meet QoS for all queries (usually most expensive)
- Auxiliary instance type: other types, can meet QoS for some queries smaller than certain batch sizes (usually cheaper)



One-Base-One-Auxiliary Example

Approximate the throughput upper bound based on whether base or auxiliary is the bottleneck

 Estimate maximum possible throughput in an unrealistic scenario where all queries are available to us at the beginning, and we can control when each query should arrive – then there is no need to worry about latency interactions with queuing.



Please refer to our paper for the detailed mathematical formulation

Exploiting Approximated Throughput Upper-bound

Approximate the throughput for all possible configurations

Quick because no online evaluation is needed

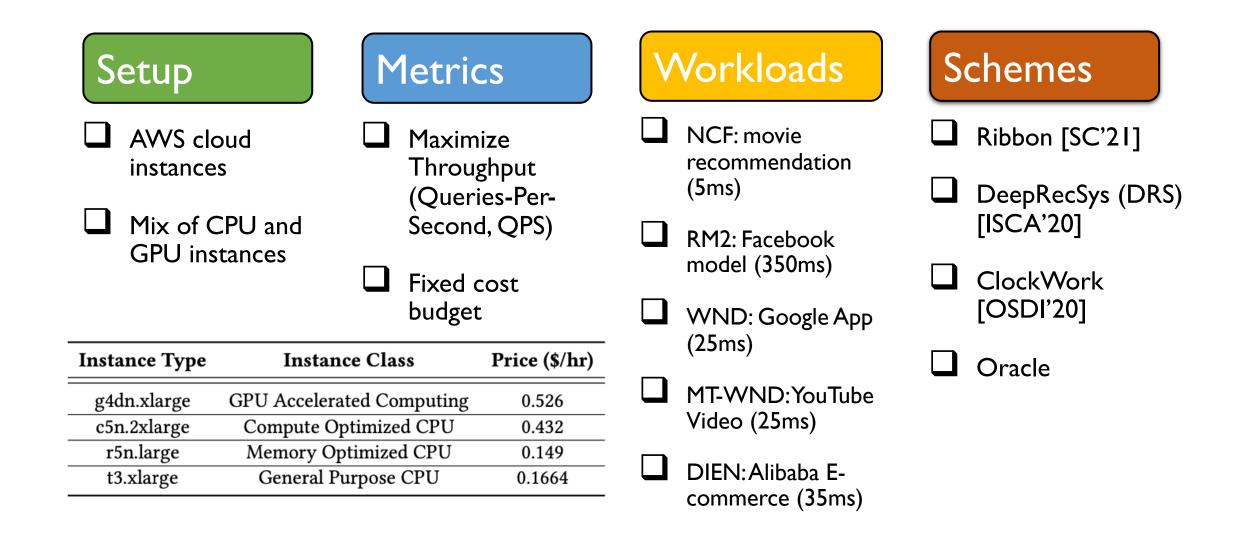
Rank the configurations using the approximated throughput

Kairos: takes the top-10 configuration as a cluster and pick the center (Euclidean distance) Kairos+: online evaluation and pruning. Always finds the optimal

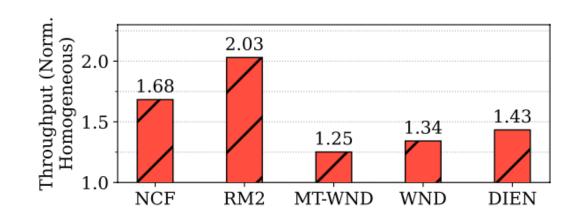
Kairos+ algorithm

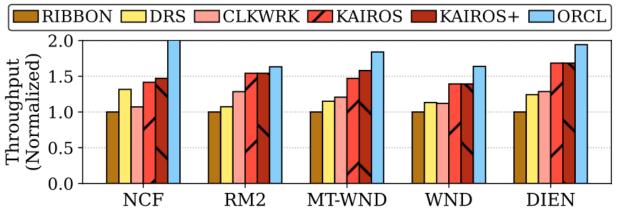
Algorithm 1: KAIROS+'s pruning-based algorithm for quickly finding optimal configuration. $UBs \leftarrow \text{Sort all } QPS_{max} \text{ high to low}$ *curr* best = 0 / / Highest throughput so far $best_config = None$ $configs \leftarrow$ list of all configs within cost budget $x \leftarrow$ variable representing one configuration foreach $UB(\mathbf{x})$ in UBs do if $x \in configs$ then eval = f(x) / / Actual QPS evaluation. if eval > curr best then curr best = eval best config = xFilter all *c* out of *confiqs* that satisfies $UB(c) \leq curr \ best$ end Prune away all sub-configs. of *x* from *configs* end end **return** curr_best, best_config

Experimental Methodology



Kairos is significantly more effective than homogenous configurations and prior state of the art solutions.

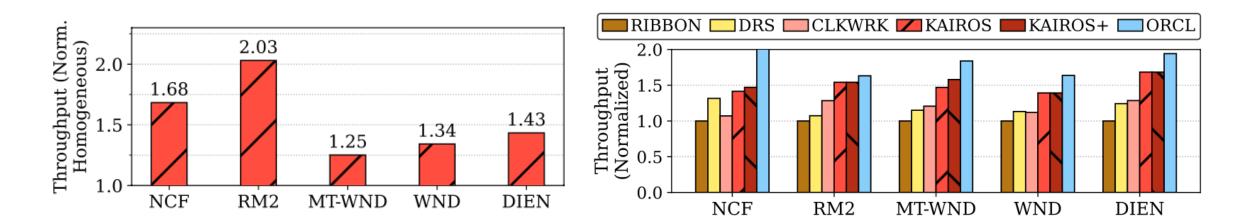




More than 1.25x throughput than the homogenous, QoS-honoring configurations under a cost budget.

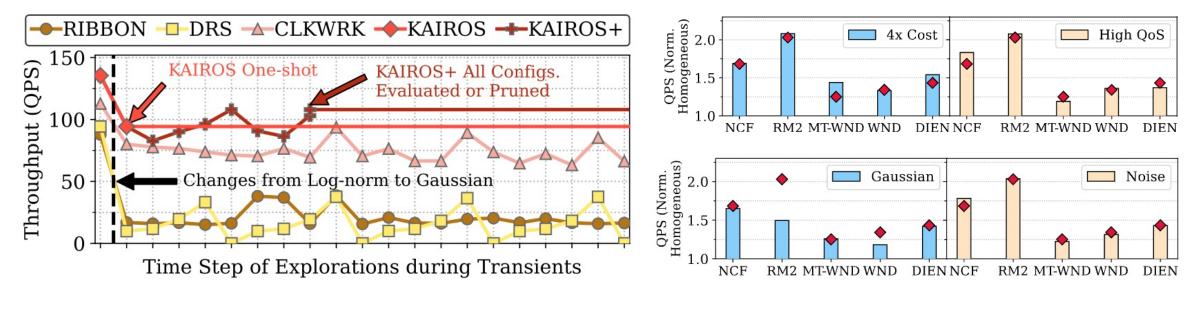
Closet-to-optimal effectiveness, consistently across all models.

Kairos is significantly more effective than homogenous configurations and prior state of the art solutions.



Kairos uses novel approximation method to find the near-optimal configuration in one shot. In contrast, prior methods are given competitive advantage to use the best configuration derived via an extensive offline search.

Kairos adapts quickly and effectively to load changes, and is robust to parameters.

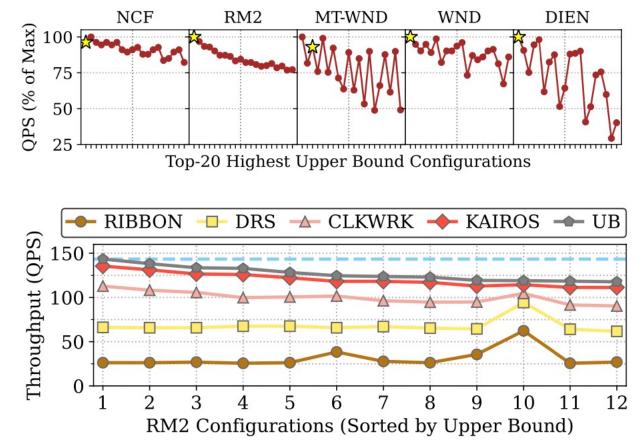


Adaption to load change distributions.

Sensitivity to cost budget, QoS target, noisy latency measurements, etc.

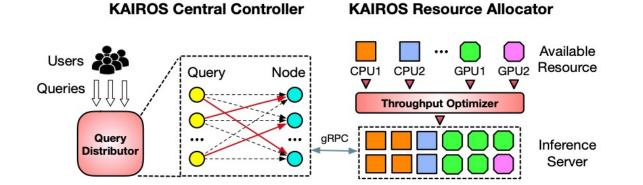
Why does Kairos work so effectively?

Kairos' novel approximation method provides near-optimal heterogeneous configuration



Kairos' query dispatching mechanism works effectively with approximated near-optimal heterogenous configuration.

Summary of Kairos' Contributions



Contact

Baolin Li

li.baol@northeastern.edu

An open-source ML inference system that achieves high inference throughput and meets QoS under a specified cost budget

A novel approximation method to determine heterogenous configuration without expensive online evaluation of different heterogenous hardware instances.

A novel query-distribution/dispatching mechanism by mapping the problem of query dispatching among heterogenous hardware as the bipartite graph matching problem.

This material is based upon work supported by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract No. FA8702-15-D-0001, and United States Air Force Research Laboratory Cooperative Agreement Number FA8750-19- 2-1000. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Assistant Secretary of Defense for Research and Engineering, or the United States Air Force. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.