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Kairos Executive Summary

Explores Two Important Questions

A high-throughput ML inference system 
that is effective under QoS and cost 

budget constraints

Is heterogeneity in hardware always beneficial for building high-performance ML 
inference services? 

How to provision an effective heterogenous ML inference system and distribute 
ML inference queries on them? 



ML-based services are deployed in cloud 
datacenters with heterogeneous resources



… but, exploiting heterogeneity optimally for 
ML inference serving is challenging!

Heterogeneity can be worse 
than homogeneity.

Homogenous configuration [4,0,0]



… but, exploiting heterogeneity optimally for 
ML inference serving is challenging!

Heterogeneity can be worse 
than homogeneity.

Finding effective heterogenous 
configuration requires expensive 

exploration of configurations.

Homogenous configuration [4,0,0]



Rich Literature of ML Inference Serving
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Table 1: Overview of related works and K�����.

Inference
QoS

Through-
put

Cost Query
Mapping

Proactive in
Heterogeneity

No Online
Exploration

Miscellaneous Notes

Paragon [10] 8 4 8 4 8 8 Requires prior data for training

TetriSched [11] 8 8 8 4 8 4 Supports user-based reservation

S3DNN [13] 4 4 8 4 8 4 Uses supervised CUDA stream

DART [14] 4 4 8 4 8 8 Pro�les layers and applies parallelism

Scrooge [15] 4 4 4 8 8 8 Chain execution of media applications

Ribbon [16] 4 4 4 8 4 8 Bayesian Optimization for allocation

DeepRecSys [17] 4 4 8 4 8 8 Schedules using pro�led threshold

Clockwork [18] 4 4 8 4 8 4 Consolidates latency for predictability

K����� 4 4 4 4 4 4 Full heterogeneity support

despite advantageous implementations of those competing schemes
by ignoring the exploration overheads and improving the query
distribution technique. K����� will be open-sourced with the
�nal version of the paper for reproducibility, community
adoption, and enhancement.

2 RELATEDWORK
Table 1 lists the relevant works in exploiting heterogeneous hard-
ware and inference serving. Overall, K����� is the only work that
satis�es all the desirable properties (table header from left to right):
(i) meets QoS for inference queries; (ii) has service throughput
requirement; (iii) is aware of heterogeneous hardware cost; (iv)
intelligently distributes (or maps) queries among resources; (v)
proactively allocates and optimizes heterogeneous resources; and
(vi) does not need prior knowledge to train a model or perform
online exploration. While some previous works are heterogeneity-
aware (i.e., can e�ciently use available heterogeneous hardware),
they do not proactively con�gure the heterogeneity to optimize
other aspects: query throughput, QoS, and cost budget.

Latency-critical applications are commonly studied in large-scale
datacenter and cloud systems [19–23]. Previous works such as
Paragon [10] and TetriSched [11] have focused on optimizing het-
erogeneous resource utilization [24–27], but their resource hetero-
geneity is pre-determined and sub-optimal, and their target applica-
tions are long-running jobs in datacenters, which is di�erent from
online inference tasks. Some other previous works have relied on
tuning by expertise [28–31], prior pro�ling [32–35], or historical
training data from similar applications [36–39], and cannot be used
to solve the K����� problem.

Existing ML inference frameworks [1, 4, 8, 13, 14, 18, 40–46] are
not suitable for exploiting heterogeneous hardware optimally and
may require extensive pro�ling, K����� addresses this limitation.
For example, S3DNN and DART are heterogeneity-aware deep
neural network (DNN) inference frameworks [13, 14], but their
hardware heterogeneity is pre-determined. INFaaS [46] selects one
particular hardware type from a pool of devices depending on the
user application, but unlike K�����, it does not explore serving the
model using di�erent hardware simultaneously. Media application
frameworks such as Llama [45] and Scrooge [15] allocate di�erent
hardware for di�erent stages of the media application inference, but

each query is assigned to the same sequence of hardware types, they
do not distribute queries to heterogeneous resources like K�����
and are not suitable for general purpose applications.

Ribbon [16] optimizes the serving cost by exploring di�erent
heterogeneous con�gurations, but compared to K�����, it still in-
curs Bayesian Optimization exploration overhead and does not
exploit the heterogeneity by intelligently distributing the queries.
DeepRecSys [17] explores heterogeneity between GPUs and CPUs
when serving online queries. However, it does not explore the po-
tential of di�erent CPU/GPU ratios under a cost budget. It uses a
hill-climbing algorithm to �nd an optimal threshold for query dis-
tribution, but it incurs tuning overhead as the threshold is di�erent
for each heterogeneous con�guration. Clockwork [18] consolidates
design choices in a top-down manner for deterministic inference
latencies, but its central controller does not exploit heterogeneous
hardware like K�����. Compared to all previous work, K����� de-
livers a full suite of heterogeneity support for cloud service and
considers all key metrics (QoS, throughput, and cost).

3 BACKGROUND
Machine learning inference service. When machine learning
models are trained into maturity, they will get deployed in produc-
tion to provide ML inference service. The service users can submit
inference requests through provided interfaces (e.g., HTTP request),
then get a response. The inference pipeline can have multiple stages
(e.g., data pre-processing, model prediction, post-processing), and
they are typically packaged into a container image along with the
software dependencies. On the cloud, the inference service provider
can then allocate a set of compute instances and use a resource
manager like Kubernetes to deploy the service. In this work, we
focus on discussing the potential of using a heterogeneous resource
instance allocation – how to e�ciently distribute the inference
queries and �nd a good heterogeneous con�guration quickly.
Inference serving with QoS constraints and cost budget. The
inference service has a QoS target, requiring the tail latency (e.g.,
99C⌘ percentile) of queries to be within a limit for a better user ex-
perience. For �exibility reasons and the pay-as-you-go model, busi-
nesses rent computing power from the cloud computing provider
to meet the QoS target, but they also have a budget constraint.
Each compute instance type, rented from the cloud, is associated
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Prior state-of-the-art solutions do not proactively exploit heterogeneity for 
cost and performance-effectiveness, incur high overhead during heterogeneity 

exploration, and suffer from sub-optimal inference query 
distribution/dispatching. 

Why are existing approaches not 
sufficient or optimal?



Heterogeneity-aware Query 
Dispatching Mechanism 

Given heterogeneous hardware 
resources, a novel policy to optimally 
distribute the inference queries to the 
heterogenous hardware, in a QoS- and 

throughput-aware fashion

Finding Near-optimal 
Heterogenous Configuration 
without Online Exploration  

Given a query distribution policy, 
design an optimizer to quickly find a 

near-optimal heterogeneous hardware 
configuration under cost budget

Kairos Goals and Key Ideas

Maximize throughput Meet Quality-of-service (QoS)

Meet cost budget Fast convergenceG
oa

ls



Kairos System Overview



Kairos’ Inference Query 
Dispatcher 

Queries
(with different 
batch sizes)

Servers
(CPUs, GPUs)Processing 

time

QoS 
constraint 

time

Waiting time

Time till 
availability

Performance

Heterogeneity 
coefficient

Heterogeneity coefficient: measures how important a hardware 
instance is to the system



Formulating Query Distribution as Bipartite 
Graph Matching Problem

Queries Servers

Kairos minimizes resource usage to 
provide max slack time for the future 

queries

Edge cost



Intuition behind Kairos’ query dispatcher

Kairos matches higher speedup queries to more powerful 
devices to create more slack time for the future – resulting in 

lower chance of QoS violation



Kairos Resource Allocator

Key idea: rank heterogeneous resource configurations using approximation.
No online evaluation! 

Classify the resources as base type or auxiliary type

- Base instance type: most performant type, can meet QoS for all queries 
(usually most expensive)

- Auxiliary instance type: other types, can meet QoS for some queries 
smaller than certain batch sizes (usually cheaper)



One-Base-One-Auxiliary Example

Approximate the throughput upper bound based on whether base or 
auxiliary is the bottleneck 

Please refer to our paper for the detailed mathematical formulation
90/0.4 – 90 = 135

140/0.7 – 140 = 60

(90 – 60) / 90 * 100 
= 33

• Estimate maximum possible throughput in an unrealistic scenario where all queries are available to us at 
the beginning, and we can control when each query should arrive – then there is no need to worry 
about latency interactions with queuing. 



Exploiting Approximated Throughput Upper-bound

Approximate the throughput for all possible
configurations

Quick because no online evaluation is needed

Rank the configurations using the
approximated throughput

Kairos: takes the top-10 configuration as a
cluster and pick the center (Euclidean distance)
Kairos+: online evaluation and pruning. Always 
finds the optimal

Kairos+ algorithm



Metrics

q Maximize 
Throughput 
(Queries-Per-
Second, QPS)

q Fixed cost 
budget

Setup

q AWS cloud 
instances

q Mix of CPU and 
GPU instances

Workloads
q NCF: movie 

recommendation 
(5ms)

q RM2: Facebook 
model (350ms)

q WND: Google App 
(25ms)

q MT-WND: YouTube 
Video (25ms)

q DIEN: Alibaba E-
commerce (35ms)

Schemes

q Ribbon [SC’21]

q DeepRecSys (DRS) 
[ISCA’20]

q ClockWork 
[OSDI’20]

q Oracle

Experimental Methodology



Kairos is significantly more effective than 
homogenous configurations and prior state of 

the art solutions. 
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More than 1.25x throughput than the 
homogenous, QoS-honoring 

configurations under a cost budget.

Closet-to-optimal effectiveness, 
consistently across all models.



Kairos is significantly more effective than 
homogenous configurations and prior state of 

the art solutions. 
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Kairos uses novel approximation method to find the near-optimal configuration in 
one shot. In contrast, prior methods are given competitive advantage to use the 

best configuration derived via an extensive offline search. 



Kairos adapts quickly and effectively to load 
changes, and is robust to parameters.
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Sensitivity to cost budget, QoS 
target, noisy latency 
measurements, etc. 

Adaption to load change 
distributions. 



Why does Kairos work so effectively?

20

Kairos’ query dispatching 
mechanism works effectively with 

approximated near-optimal 
heterogenous configuration.

Kairos’ novel approximation 
method provides near-optimal 
heterogeneous configuration



Open-source 
Artifact

Contact

Baolin Li

li.baol@northeastern.edu

Summary of Kairos’ Contributions

This material is based upon work supported by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract No. FA8702-15-D-0001, and United States Air Force Research Laboratory Cooperative Agreement Number 
FA8750-19- 2-1000. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Assistant Secretary of Defense for Research and Engineering, or 
the United States Air Force. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein. 

A novel approximation method to determine heterogenous 
configuration without expensive online evaluation of different 

heterogenous hardware instances. 

A novel query-distribution/dispatching mechanism by mapping the 
problem of query dispatching among heterogenous hardware as 

the bipartite graph matching problem.

An open-source ML inference system that achieves high inference 
throughput and meets QoS under a specified cost budget


