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Kairos Executive Summary

A high-throughput ML inference system
that is effective under QoS and cost
budget constraints

Explores Two Important Questions

Is heterogeneity in hardware always beneficial for building high-performance ML
inference services?

How to provision an effective heterogenous ML inference system and distribute
ML inference queries on them?



ML-based services are deployed in cloud
datacenters with heterogeneous resources
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... but, exploiting heterogeneity optimally for
ML inference serving is challenging!
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Rich Literature of ML Inference Serving
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Why are existing approaches not

sufficient or optimal?

Inference Through-  Cost Query Proactive in No Online Miscellaneous Notes
QoS put Mapping Heterogeneity Exploration

Paragon [10] b 4 v X 4 b 4 X Requires prior data for training [- RIBBON 1 DRS ] CLKWRK — ORCL]
TetriSched [11] X X X v b 4 v Supports user-based reservation + 120 —

S3DNN [13] (4 (4 ¢ v X v Uses supervised CUDA stream ,.§| 100 - —

DART [14] 4 4 4 v X 4 Profiles layers and applies parallelism )] s

Scrooge [15] v v v X b 4 X Chain execution of media applications § 801 T ]

Ribbon [16] 4 4 4 X 4 b 4 Bayesian Optimization for allocation "ﬁ 60 -—I_
DeepRecSys [17] 4 v b 4 v b 4 X Schedules using profiled threshold 40 -
Clockwork [18] v (4 b 4 (4 X (4 Consolidates latency for predictability (4' 0, 0) ( 2,0,9 ) (3' 1.3 )

Kairos v v v v v v Full heterogeneity support

Prior state-of-the-art solutions do not proactively exploit heterogeneity for
cost and performance-effectiveness, incur high overhead during heterogeneity
exploration, and suffer from sub-optimal inference query
distribution/dispatching.



Kairos Goals and Key ldeas
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Kairos System Overview
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Kairos’ Inference Query
Dispatcher
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Heterogeneity coefficient: measures how important a hardware
instance is to the system



Formulating Query Distribution as Bipartite
Graph Matching Problem

Queries Servers
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Kairos minimizes resource usage to
provide max slack time for the future
queries

Table 2: Query distribution optimizer parameters.

List

Description

Time needed to finish serving Q; on instance I; from t.

Number of queries at time ¢.
n | Number of instances in the configuration.
Cj | Heterogeneity coefficient for instance I;.
Tgos | QoS target latency.
Wi | Query Q;’s time spent waiting in queue before t.
P;j | Query-to-instance pairing/assignment matrix.

n i Zn: CE(L,; ,)|P, j Edge cost

1=t
s.t. Vi, j, (Ll,]+MIi)Pl]<TqOS
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Intuition behind Kairos’ query dispatcher

[Instances] [ Query [ Query ] QoS ]
Available Arrival Arrival Target Target
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Kairos matches higher speedup queries to more powerful
devices to create more slack time for the future — resulting in
lower chance of QoS violation



KAIROS Central Controller ﬂAIROS Resource Allocator \

. s b e | B OO O e
Kairos Resource Allocator me [[] /10030 |

ve e | PO E%Evggg In;erence

\ )

Key idea: rank heterogeneous resource configurations using approximation.
No online evaluation!

Classify the resources as base type or auxiliary type

- Base instance type: most performant type, can meet QoS for all queries
(usually most expensive)

- Auxiliary instance type: other types, can meet QoS for some queries
smaller than certain batch sizes (usually cheaper)

DZeE Base QPS= Qbs+

QPS=Q =
QPS=Q, < aJeﬁQPS O Size=s S

v v [ x] f 1f

Base Instance Auxiliary Instance Query size distribution




One-Base-One-Auxiliary Example

Approximate the throughput upper bound based on whether base or
auxiliary is the bottleneck

e Estimate maximum possible throughput in an unrealistic scenario where all queries are available to us at
the beginning, and we can control when each query should arrive — then there is no need to worry
about latency interactions with queuing.

Scenario 1 QPS__ =225 { Scenario 2 QPS__ =233 140/0.7 — 140 = 60
Q, = 100 Only s+ i Q, =100 Base-slack-
Base - , PP Base -~ _ =
Q.5 =90 S3GPS queries i Q.5 =90 0GRS 330PS throughput (_9(;3 60) / 90 * 100
Q, = 150 Q=140 -
annot use | _ o
$=500 Aty « because | 3600 Auxifiary iy s
= V. 135 QPS Base is full i - 140 QPS

90/0.4 —90 = 135

Please refer to our paper for the detailed mathematical formulation



Exploiting Approximated Throughput Upper-bound

Approximate the throughput for all possible Kairos+ algorithm

cO nﬁ gu rations Algorithm 1: Kairos+’s pruning-based algorithm for

quickly finding optimal configuration.

UBs « Sort all QPS;;,4x high to low

curr_best =0 // Highest throughput so far
best_config = None

configs < list of all configs within cost budget
x « variable representing one configuration
foreach UB(x) in UBs do

Quick because no online evaluation is needed

Rank the configurations using the ifxcconfigsthen e evatustion
approximated throughput tf eval > curr_best then
Kairos: takes the top-10 configuration as a Mg of configs that satisfies
cluster and pick the center (Euclidean distance) nd ) et

. . . . Prune away all sub-configs. of x from configs
Kairos+: online evaluation and pruning. Always end

end

fl ndS the Optlma| return curr_best, best_config




Experimental Methodology

1 AWS cloud d Maximize
instances Throughput
(Queries-Per-
( Mix of CPU and Second, QPS)
GPU instances
(] Fixed cost
budget
Instance Type Instance Class Price ($/hr)
g4dn.xlarge GPU Accelerated Computing 0.526
c5n.2xlarge Compute Optimized CPU 0.432
r5n.large Memory Optimized CPU 0.149
t3.xlarge General Purpose CPU 0.1664
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Kairos is significantly more effective than

homogenous configurations and prior state of
the art solutions.
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More than |.25x throughput than the Closet-to-optimal effectiveness,

homogenous, QoS-honoring consistently across all models.
configurations under a cost budget.
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Kairos is significantly more effective than

homogenous configurations and prior state of
the art solutions.
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Kairos uses novel approximation method to find the near-optimal configuration in
one shot. In contrast, prior methods are given competitive advantage to use the
best configuration derived via an extensive offline search.
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Kairos adapts quickly and effectively to load

changes, and is robust to parameters.
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Adaption to load change
distributions.



Why does Kairos work so effectively?
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Summary of Kairos’ Contributions
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..............................

An open-source ML inference system that achieves high inference (Open-source\
throughput and meets QoS under a specified cost budget Artifact

A novel approximation method to determine heterogenous
configuration without expensive online evaluation of different
heterogenous hardware instances.

A novel query-distribution/dispatching mechanism by mapping the
problem of query dispatching among heterogenous hardware as
the bipartite graph matching problem.
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