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Abstract—Production high-performance computing (HPC) sys-
tems are adopting and integrating GPUs into their design
to accommodate artificial intelligence (AI), machine learning,
and data visualization workloads. To aid with the design and
operations of new and existing GPU-based large-scale systems,
we provide a detailed characterization of system operations, job
characteristics, user behavior, and trends on a contemporary
GPU-accelerated production HPC system. Our insights indicate
that the pre-mature phases in modern AI workflow take up signif-
icant GPU hours while underutilizing GPUs, which opens up the
opportunity for a multi-tier system. Finally, we provide various
potential recommendations and areas for future investment for
system architects, operators, and users.

I. INTRODUCTION

This paper shares the operational experience gained from
managing and running the GPU-based MIT Supercloud su-
percomputer [41] that is primarily installed to serve AI needs
for domain scientists and engineers. GPUs are not new to
the systems and architecture community, or the cloud com-
puting data centers. The systems and architecture community
has more than a decade of experience operating GPU-based
systems. Many HPC centers share and celebrate the success
of running GPU-accelerated supercomputers [17], [49], [52].
However, as a community, we do not have a deep understand-
ing of the basic characteristics of how our users use these
GPU-accelerated large-scale systems. In particular, we have a
limited understanding of the primary purposes of the GPU-
accelerated systems, the resource consumption characteristics
of AI workloads, the types of jobs that are executed, and how
efficiently the users use these systems.

However, this lack of understanding is not fully unexpected.
When a new kind of computing accelerator [42] emerges, it
takes multiple years to port mission-critical applications. In the
meantime, the hardware also matures, and early experiences
often share the maturity and reliability of new hardware in
the production system. As the hardware gets more mature
and powerful, new applications emerge and take advantage
of the new hardware. GPUs have followed a similar path over

the last decade. GPUs are now at a point where their hard-
ware reliability maturity is well-proven and has enjoyed wide
adoption from a variety of computational science applications.
Consequently, this is a timely point to understand how users
use the GPU resources and the common characteristics.

Our deployment and operational experience with a GPU-
accelerated supercomputer enable us to ask these questions
about the user job and system characteristics. To the best of
our knowledge, one of the most closely related works is a
recent study from Microsoft [23]. While useful, this prior study
lacks the level of detail needed in our community to design
better architectural/system techniques and better operate GPU-
accelerated systems. In particular, the previous study lists
only high-level statistics (e.g., runtime and number of GPUs
used), but it does not provide detailed information about
the fine-grained resource utilization of GPUs (e.g., streaming
multiprocessor utilization, GPU memory utilization, power
consumption). The previous study does not provide details
about how the characteristics of the jobs belonging to the
same and different users vary over time. Our study bridges
these understanding gaps and provides several new insights
useful for the systems and architecture community running
deep learning and machine learning workloads, the primary
workloads of Supercloud.

Our study brings significant advances over the
previous studies due to richer and more fine-grained
information/GPU-level statistics available in our dataset and
new trends/opportunities We share multiple operational-
related experiences, new opportunities, and lessons learned
which, we hope, are useful to the community. The highlights
of our characterization include the following.

We find that most GPU-accelerated jobs tend to have
low utilization of different resources such as SM, memory,
and PCIe bandwidth. However, resource utilization can vary
greatly during job execution, switching between idle and active
phases, even reaching the maximum capacity at times. This
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property opens up the need to develop production-suitable
dynamic techniques to share non-contending GPU resources
among concurrent jobs to improve machine utilization and
job throughput, without having a large impact on job perfor-
mance [7], [18], [58], [61].

Interestingly, we find that users have a variety of job run
times and GPU utilization characteristics, including “expert”
users with many jobs and GPU hours. The system can be
best served by identifying users’ needs and providing efficient
solutions. Our system employs one such solution by providing
different interfaces for different job types for scheduling.
On Supercloud, a large fraction of the jobs are multi-GPU
and a majority of the users run at least one multi-GPU
job. Characterizing these jobs is important because of their
notable GPU hours footprint. While 40% of the multi-GPU
jobs have idle GPUs, the resource consumption tends to be
similar among active GPUs. This allows the same resource
management policy to be deployed across all GPUs of multi-
GPU jobs.

We present a new method of classifying HPC jobs: mature,
exploratory, development, and IDE. We find that a large
fraction of the jobs on our system is exploratory (e.g., hyper-
parameter tuning). Users can benefit from a two-tier system
design, with GPUs of different qualities being priced differ-
ently, so that they can run their lower-utility jobs on the slower
GPUs. We discover a paradigm shift on HPC systems as they
proceed toward catering GPU-accelerated artificial intelligence
and machine learning workloads: a considerable portion of the
users execute a high rate of low-utilization development and
IDE jobs. These jobs can benefit from resource sharing and
state-saving (model checkpointing).

Overall, to the best of our knowledge, this study is the first
work to classify the deep learning jobs in mature and non-
mature jobs, and is the first to show that jobs have irregular
and unpredictable utilization phases. We discover that even
jobs submitted by the same user vary widely in terms of their
resource consumption characteristics.

To promote rapid advancement in this area, our relevant
framework, data, and project updates are available publicly at
https://dcc.mit.edu/ Finally, we note that our find-
ings are based on our experience with Supercloud and should
be generalized or extended to other systems with caution and
further quantitative validation.

II. SYSTEM SPECIFICATIONS AND OPERATIONAL LESSONS

In this section, we provide a description of our system
specifications, its workloads and users, our dataset and
methodology, and the operational details and lessons. The
system studied in this work is the MIT Supercloud.

System Description. The Supercloud system is an HPC
cluster designed for GPU-accelerated AI workloads, including
the needs of the Air Force and government labs. It consists of
224 Intel Xeon Gold 6248 based nodes (two CPUs per node,
each with 20 cores; 2-way hyperthreading per-core), each
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Fig. 1: Configuration of a node on the Supercloud system.

TABLE I: Specifications of the Supercloud system.
Node Specifications

Number of Nodes 224 Node
RAM

384 GB

Number of CPU
Cores

8960 cores (two CPUs per
node, each with 20 cores;
2-way hyperthreading per-
core)

Processor Intel Xeon
Gold 6248

Interconnect 100 Gb/s Omnipath two-
layer partial fat-tree

Network 25 Gb/s Eth-
ernet CX-4

GPU Specifications
Number of GPUs 448 Type Nvidia Volta

V100
GPUs per Node 2 RAM 32 GB

Storage Specifications
Local 1 TB SSD & 3.8 TB HDD Shared 873 TB SSD

with two Nvidia Volta V100 GPUs. There are 448 GPUs in
total, each with a RAM of 32GB. The node configuration is
shown in Fig. 1. Each node has a RAM of 384 GB, with
a local storage capacity of 1TB SSD + 3.8 TB HDD and a
total distributed solid-state storage capacity of 843 TB. The
Supercloud system’s specifications are summarized in Table I.

Types of Workloads and Users. Several different types
of workloads run on the Supercloud system: deep learning,
batch jobs, interactive jobs, map-reduce, data visualization
and analysis, and general machine learning and artificial
intelligence workloads. The Supercloud system is designed as
an interactive system to be used by novice users who are using
the system to actively design and prototype their AI solutions.
Unlike other production HPC clusters, the Supercloud
system is also designed for users to prototype, experiment,
and deploy their workflows. A typical user’s workflow is
described in Fig. 2. A large subset of Supercloud users tend
to use the system to develop, train and benchmark models
in PyTorch [33] and Tensorflow [1]. Typical workloads
include large language models [6] as well as published
image classification models such as ResNet50 [21] and
VGG16 [50] for specific tasks. The Supercloud cluster
provides a comprehensive suite of open-source tools for
serial and distributed training of neural networks, including
tools such as PyTorch, PyTorch-Lightning [16], Tensorflow,
Horovod [47], and many other software dependencies. The
infrastructure also includes high-performance computing tools
such as MPI and the Nvidia Collective Communications
Library (NCCL) configured for GPUDirect and RDMA over
ethernet for optimal performance. User requirements typically
include bleeding-edge or recently published open-source
implementations of deep learning libraries or publications,
which can be easily installed in the userspace. Supercloud
also hosts commonly used deep learning datasets in a shared
space to avoid unnecessary duplication of data.
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Fig. 2: A typical user’s interaction with the Supercloud system.

System Monitoring. The Supercloud system uses Slurm
workload manager for job scheduling. Data collection
for this study leveraged Slurm’s built-in capabilities to
enable transparent, lightweight, and automated system
monitoring [60]. Specifically, Slurm provides job prolog
programs to start time-series monitoring of the jobs running
on the cluster. It also includes a number of plugins that can
report detailed job data such as CPU usage, memory usage,
and file I/O, which can be used to understand job behavior.
We also used vendor-provided software for monitoring GPUs.
The Nvidia System Management Interface (nvidia-smi)
is a command-line utility that enables the management
and monitoring of Nvidia GPU devices [10]. The Slurm
prolog is used to start the collection of CPU-based time
series data on every node assigned to a job running on the
system. Additionally, if the job requests one or more GPUs,
the prolog also launches the nvidia-smi utility on all
nodes assigned to that job. Both time series are written to
independent files on the local storage on each compute node
as a way to avoid overloading the cluster-wide shared file
system. The CPU time series data is collected at 10-second
intervals and the GPU time series data is collected at an
interval of 100ms. Both time intervals were empirically
chosen as a compromise between data volume and usability.
The collection of both time series is automatically stopped at
the end of a job through the SLURM epilog, which runs at
job termination. The epilog is also responsible for copying
the collected data back to the central file system of Supercloud.

Dataset Description. Over the duration of our study of
125 days, 191 unique users executed 74,820 jobs in total
on the Supercloud system. For GPU analysis, jobs running
for less than 30 seconds are filtered out since no activity
is observed for these very short jobs, and 47,120 jobs are
considered. The dataset is anonymized and for all jobs,
the minimum, mean, and maximum resource utilization
of a variety of CPU and GPU metrics are collected. CPU
and scheduler-related data is reported from Slurm logs,
and GPU-related data is profiled using the nvidia-smi
command. In the end, both datasets are combined using job
Ids to create a single dataset. We also collected a detailed
log of resource utilization of 2149 jobs at an interval of
100ms (time series dataset) to study variability during the run.

General Methodology. We study different job and user
characteristics including run times, queue wait times, power
consumption, PCIe bandwidths, and job functions. We also
study the utilization of different GPU resources including the
GPU streaming multiprocessors (referred to as SM utilization),
the GPU memory bandwidth (referred to simply as memory
utilization in keeping with the Nvidia terminology), the GPU

memory amount (referred to as memory size utilization).
For each of these metrics, the average over multiple GPUs
was computed to get a single number for multi-GPU
jobs. We generally use empirically-obtained cumulative
distribution functions (CDFs), star charts, pie charts, box
plots, and correlation bars to present our results. Detailed
methodological details and figure explanations are provided
in conjunction with the result presentations in the following
sections. Most of the analysis was done using the SciPy
stack (Pandas, Matplotlib, Numpy). A multi-core accelerated
version of Pandas (Modin) was leveraged to analyze the large
(42 GB) time series dataset.

System Operations Details. Supercloud’s job queue
is configured based on hardware type. At the time of
this paper’s research and submission, the system was
homogeneous and there was a single job queue for all jobs,
regardless of the job’s function, number of CPU cores,
requested wall times, number of GPUs, and CPU memory
requirement. In the interim, new CPU-only hardware also
has been added to the system and supports multiple queues
based on hardware requests (GPU/CPU-only) [44]. Below, we
summarize some of our major lessons learned from operating
a GPU-accelerated supercomputer, primarily designed to
serve AI workloads.

Summary of Operational Challenges and Experiences

Our biggest challenge has been maintaining the software
stack updated as the hardware evolves. Although this work
only describes experiences with only one system, our data
center has multiple supercomputers and hence, the hardware is
heterogeneous. Somewhat to our surprise, keeping the software
stack updated and compatible has been most demanding. In
particular, performing ML regression tests on multiple GPUs
for scaling and efficiency testing is challenging and time-
consuming. As new software versions roll out, regression
testing is done on (new) hardware to ensure compatibility. This
testing suite also checks the multi-GPU functionality of deep
learning workloads. But, more automated tools and workflows
are needed in this domain.

Related to previous learning, our users spend a significant
portion of their effort in re-tuning their libraries and software
stack as the hardware changes. A large share of our positive
user experience is attributed to making this process smoother
for our users. User requests often include missing packages
and newer library versions. Therefore, twice every year the
library versions (Anaconda, PyTorch, and TensorFlow) are
frozen and released system-wide as modules. This ensures
reproducibility and also saves the effort of user install. We
have observed a high usage of PyTorch in the past year,
compared to TensorFlow.

Scaling of deep learning workloads from single-node to
multi-node settings is non-trivial for many users, whom we
train to correctly configure SLURM and MPI and get them
working with deep learning libraries. The usage of the system
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Fig. 3: (a) Distribution of runtimes of GPU and CPU jobs. (b)
Queue wait time of GPU and CPU jobs as % of their total
service time.

often increases closer to the deadlines of popular deep learning
conferences like ICML and NeurIPS and there are requests
for increased allocations. We account for this effect in our
analysis.

Hardware reliability has been fairly stable over the recent
few years and accounts for less than 0.5% job failures.
Instead, we are observing that different deep learning jobs have
different utility and hence, may be early terminated based on
observed training loss and hence, future resource managers
and schedulers need to plan for such shift in user behavior –
discussed in more detail in Sec. VI.

Monitoring resource consumption is key to improving op-
erational efficiency for any data center. Over time, we learned
that while vendor-provided tools are useful in many contexts,
especially in generic data center context, they need tuning
and tweaking to be production-suitable for HPC centers. For
example, the logging tools can easily overload the metadata
server and shared file system. Also, they can interfere, creating
load imbalance among the processes of the same job due to the
potential malfunction of one of the nodes – especially harmful
for parallel jobs that rely on tight synchronization. Therefore,
HPC centers need to invest effort in making such tools (e.g.,
DCGM [11], nvidia-smi) suitable and ready for their systems
– easy plug-and-play is not always possible.

III. CHARACTERIZATION OF GENERAL JOB BEHAVIOR
AND RESOURCE UTILIZATION

We begin our analysis by presenting the general character-
istics of the workloads that run on the Supercloud system.

The most basics of these characteristics are the service time
characteristics such as the run times and the queue wait times
of the GPU-accelerated jobs (GPU jobs). Fig. 3(a) shows the
empirical cumulative distribution function (CDF) of the queue
wait times and run times of all GPU jobs. First, we look at the
characteristics of the GPU jobs. While the median run time of
GPU jobs is 30 minutes, GPU jobs have a diverse set of run
times: the 25th percentile run time is 4 minutes and the 75th

percentile is 300 minutes (note that the x-axis of run times
has a logarithmic scale). In fact, the run time for some jobs
can be as low as less than 1 minute, and for others, it can be
as high as more than 20 hours.

Next, we look at the runtimes of CPU jobs (jobs without
GPU request) for comparison. The figure shows that CPU
jobs run for a much shorter duration than GPU jobs. While

the median run time of GPU jobs is 30 minutes, the median
run time of CPU jobs is only 8 minutes. This disparity exists
because of the long-running, multi-threaded, GPU-intensive
workloads, such as deep learning and recommendation model
training, big data analysis and visualization, and scientific
computation jobs that are run on the GPUs [9], [20], [48].

While CPU jobs tend to have shorter run times, they tend
to have relatively longer queue wait times than GPU jobs.
To demonstrate this, we plot an empirical CDF of the queue
wait times as percentages of their respective service times
(queue wait times + run times) in Fig. 3(b). More than 50%
of the GPU jobs spend less than 2% of their service times
waiting in the queue, while less than 20% of the CPU jobs do
the same. The reason for this is not only because CPU jobs
have shorter run times, but they also have longer queue wait
times: 70% of the CPU jobs spend more than one minute
in the queue; in contrast, 70% of the GPU jobs spend less
than one minute in the queue. The reason for the long wait
times of CPU jobs is that CPU jobs usually request all cores
and full memory of the nodes (or a large fraction at least),
as CPUs are their only computational resource. In the case
of GPU jobs, users do not need all CPU cores and memory
available on the node, and they request fewer CPU cores
and memory. This results in the GPU jobs being scheduled
quickly because the required resources are more likely to be
available as they can be co-located on the same CPU node.
Note that Supercloud does not co-locate jobs on the same
GPU at this point. However, it allows CPU resources to be
divided among jobs.

Takeaway: As a system designed for GPU-accelerated
jobs, Supercloud is highly efficient at processing and
serving time-critical GPU workloads, with 70% of the
GPU jobs spending less than one minute in the queue.
While HPC systems typically tend to have very long
wait times because they only support exclusive node
reservations [35], [49], [52], based on regular and ac-
tive interactions with Supercloud’s users, our system
administrators have determined that GPU jobs do not
tend to have high CPU resource requirements. Therefore,
Supercloud achieves low wait times by investing in pro-
visioning enough resources to meet the GPU demand and
co-locating not-CPU-intensive GPU jobs on the same
CPU node. While our operational experience suggests
that such a strategy could be useful at Supercloud, and
potentially worth exploring for some other similar HPC
centers if GPU job characteristics are similar to Super-
cloud, there is further need and opportunity for effective
techniques for co-locating network-bandwidth bounded
GPU jobs. Mitigating network-bandwidth-caused inter-
ference at the production level requires more mature
tools.

Next, we drive the discussion to other resource utilization
characteristics of GPU jobs. We do not compare these charac-
teristics to CPU jobs as the resources and their usages are
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Fig. 4: (a) Distribution of GPU jobs in terms of their GPU
resource utilization. (b) Distribution of GPU jobs in terms of
their PCIe Tx and Rx bandwidth utilization.

disjoint for CPUs and GPUs, and they cannot be directly
compared. Hence, from here on, we only discuss GPU jobs
(referred to simply as “jobs”).

Fig. 4(a) shows the empirical CDFs of the average uti-
lization of different GPU resources including SM (usage
percentage of the GPU streaming multiprocessors), memory
(percentage of the GPU memory bandwidth used), and mem-
ory size (percentage of the GPU memory amount used). In
general, we observe that SM (median utilization is 16%)
is more heavily utilized than memory bandwidth (median
utilization is 2%) and size (median usage is 9%). This indicates
that GPU workloads tend to be more compute-intensive, which
is as expected as they are mostly deep learning and machine
learning jobs. This trend is also in keeping with the workload
behaviors observed on other contemporary systems [24], [49],
[52]. In addition, Fig. 4(b) shows that different jobs achieve
a wide range of PCIe bandwidths for both the transmission
of packets (Tx bandwidth) and the receiving of packets (Rx
bandwidth). The linearly increasing empirical CDF trend sug-
gests a uniform distribution of bandwidths across all jobs.
This indicates a large variety of data transmission patterns
between the GPUs and the host CPUs, depending on the job
requirements.

Interestingly, from Fig. 4, we observe that most jobs do
not fully utilize GPU resources: only 20% of the jobs have
more than 50% SM utilization, only 4% of the jobs have
more than 50% memory utilization, and only 15% of the jobs
have more than 50% memory size usage. This demonstrates
the opportunity for space-sharing of GPU resources among
multiple jobs. For example, a large portion of the jobs (≈ 30%)
have close to zero GPU SM utilization and 40% memory
utilization, i.e., they are memory-intensive. These jobs can
potentially share space on the GPU with SM-intensive jobs,
without the two types of jobs contending with each other for
resources.

To further explore in this direction, in Fig. 5(a) and (b), we
plot the SM utilization and memory utilization, respectively,
of different types of jobs: map-reduce (1% of all jobs), batch
(30%), interactive (4%), and other (65%). Note that we are
able to identify map-reduce, batch, and interactive jobs as
they are submitted using their individual interfaces. Other jobs
(mostly deep learning jobs, and other artificial intelligence,
machine learning) are submitted via the general Slurm
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Fig. 5: SM (a) and Memory utilization (b) of different types
of GPU jobs (map-reduce, batch, interactive, and other).
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Fig. 6: (a) Empirical CDF of the total amount of time that
jobs spend in active phases as a percentage of their run times.
(b) Empirical CDF of the coefficient of variation (CoV) of the
lengths of idle and active intervals during a run.

interface. We find that these “other” jobs have the highest SM
and memory utilization as they are GPU-intensive, followed
by batch jobs. On the other hand, map-reduce and interactive
jobs tend to have low SM and memory utilization as most
of their time is spent in data movement and user-interactive
debugging and development, respectively.

Takeaway: Most GPU-accelerated jobs tend to have low
utilization of different resources such as SM, memory,
memory size, and PCIe bandwidth (< 50%). Different
jobs have different levels of utilization of each resource.
This property indicates the opportunity to share non-
contending GPU resources among concurrent jobs to
improve machine utilization and job throughput, without
having a large impact on job performance [13], [18],
[61]. However, interference during co-location is difficult
to mitigate by prediction. Based on our experience, it
is worth considering building a system having differ-
ent GPU tiers (with different prices), giving users the
flexibility to run their low-utilization jobs (e.g., inter-
active jobs) on slower/smaller GPUs, leaving higher-
performance GPUs for jobs that need them. One can
apply new research techniques on our data to demon-
strate that the economic benefits of such an approach is
a more user-friendly solution for many systems including
Supercloud.

While the low average utilization opens up abundant oppor-
tunities for GPU resource-sharing, we note that the problem
space is not straightforward. This is because the average
utilization behavior of a job is not representative of the
utilization behavior at all times during the run. To find out

5



0 50 100 150 200
CoV when GPUs
are Active (%)

0
25
50
75

100
Em

pi
ric

al
 C

DF
 

(%
 o

f J
ob

s)

SM Util.
Mem. Util.
Mem. Size

(a)

Mem. Util.

SM Util.

PCIe Rx PCIe Tx

Mem. Size
5

10
15

20
25

(b)

Fig. 7: (a) Empirical CDFs of the CoVs of different GPU
resources (SM,memory, and memory size). (b) Percentage of
jobs which have a particular resource as the bottleneck.

if this is the case, we collected a detailed time-series log
of resource utilization for a representative fraction of jobs at
an interval of 100ms. Note that in the previous analysis, the
minimum, mean, and maximum resource utilization during the
run were reported at the end of the job execution – this was
done to achieve low overhead during production, instead of
fine-grained (e.g., 100ms) data collection for all jobs.

Our analysis of the logs reveals that the GPU jobs have
“active phases” and “idle phases.” GPU resources are used
during the active phases and they remain unused during the
idle phases (only the host CPUs are used). Fig. 6(a) shows
an empirical CDF of the total amount of time that jobs
spend in active phases as a percentage of their run times.
The figure shows that the median job spends 84% of its
time actively using the GPUs (i.e., the GPUs spend 16% of
a median job’s run time idling). The 75th percentile active
GPU time is 95%, and the 25th percentile active GPU time is
only 14%. Moreover, Fig. 6(b) shows the empirical CDFs of
the coefficient of variation (CoV) of the lengths of idle and
active intervals during a run. CoV is the standard deviation
of the lengths of all idle or active intervals during a run as
a percentage of the mean length. The figure shows that both
idle (median 126%) and active (median 169%) phases have
a high CoV in general, i.e., they do not occur at a fixed
periodic interval. Thus, we found that GPUs can be idle during
a significant portion of a median GPU job’s runtime, and these
idle phases occur at irregular intervals. This suggests that while
the GPUs can be shared among multiple jobs, this has to be
achieved carefully, depending on their irregular idle phases,
so as to minimize the adverse performance impact.

In fact, even when the GPUs are actively being used, the
utilization of different GPU resources may still vary. Fig. 7(a)
shows the empirical CDFs of the CoVs of different GPU
resources (SM, memory, and memory size). The figure shows
that the median CoV of SM utilization is 14%, that of memory
utilization is 14.6%, and of memory size utilization is 8.2%.
Over 25% of all jobs have SM utilization CoV of 23% or
higher during their active phases. This indicates a great degree
of variability in resource utilization during the execution.
Interestingly, during the active phases, resource usage can even
reach as high as the maximum. Fig. 7(b) shows a radar plot
where each edge represents the percentage of jobs that have
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Fig. 8: Fraction of all GPU jobs experiencing resource bottle-
necks: (a) single resource (b) two resources

the particular resource as a bottleneck. A job is considered
to have a resource bottleneck if the maximum job usage of
that resource reaches the limit at any point during the run.
The figure shows that while the average SM utilization is low,
22% of the jobs have SM utilization as a bottleneck. On the
other hand, ≈ 0% of the jobs have memory utilization as
a bottleneck. This demonstrates that resource utilization can
vary drastically during job execution, and therefore, resource
sharing techniques should consider the temporal variations and
bottlenecks in utilization.

Next, we dig deeper to understand the resource bottlenecks
for various GPU jobs in more detail. First, in Fig. 8 (a)
(barplot version of Fig. 7(b)), we show the fraction of jobs
that have hit the maximum utilization possible for a given
resource. For example, similar to the previous plot, The
figure shows that 22% jobs used SM at 100% at some point
during their execution. SM utilization is the primary resource
bottleneck for the largest fraction of jobs. The next result
(Fig. 8 (b)) shows the fraction of jobs utilizing two resources
to the fullest during their runtime – although the maximum
utilization may occur at different times. We observe that a
small fraction of jobs experiences both PCIe Rx and PCI Tx
bandwidth bottlenecks during the same run. Also, approx. 9%
jobs experience both PCIe Rx and SM utilization bottlenecks
during the same run. In general, jobs experiencing any two or
more resource bottlenecks during the same run are less than
10%.

Takeaway: While the average resource utilization of
a GPU job is low, it is not representative of the uti-
lization behavior at all times during the job’s run. Re-
source utilization can vary greatly during job execution,
switching between idle and active phases, even reaching
the maximum capacity at times. But, the co-location
opportunity is present due to explicit time-spaced idle
phases on GPUs. Thus, there is a need and opportunity
for developing production-suitable GPU job co-location
tools that take into account temporal variation and bot-
tlenecks, such that the performances of co-located jobs
are not impacted. However, this effort also needs to be
augmented with online architectural tools that can predict
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Fig. 9: (a) Empirical CDF of the average and maximum GPU
power consumption of all jobs. (b) Percentage of jobs not
impacted under different power cap regimes.

future idle GPU phases and resource-contention among
multiple resources for more effective co-location.

The utilization of all of the above resources (SM, mem-
ory, memory size, and PCIe) directly impacts another GPU
resource: power. One might expect that due to the low uti-
lization of an average GPU’s compute, memory, and network
resources, its power consumption should be low. This is true
for the most part as shown in Fig. 9(a). The figure shows
the empirical CDF of the average and maximum (maximum
recorded value during the run) GPU power consumption of all
jobs. The median average power consumption is only 45W and
the median maximum power consumption is only 87W, while
the maximum possible power draw of the V100 GPU is 300W.
This demonstrates that most jobs consume less than half or
even a third of the available power on average. Previous works
have demonstrated similar low-power-consumption behavior
for both CPU-based and GPU-accelerated workloads [15],
[28], [36], [38], [39].

However, the Supercloud system has enough power to
support all GPUs at their maximum possible power, and
most of this power goes unused. An effective way to use
this power is to over-provision the system with more GPUs
to improve job throughput and/or support a higher load.
But, this would require capping the power consumption
of the GPUs so as to prevent a power failure due to an
unanticipated power surge. This leads us to ask how the jobs
would be impacted if the GPUs were to be power-capped at
different levels to support over-provisioning the system with
the same amount of power. Fig. 9(b) shows the percentage of
jobs that would not be impacted at all, would be impacted
considering their maximum power consumption and would be
impacted considering only their average power consumption
for three power cap levels: 150W (50% of 300W, i.e., double
the current number of GPUs can be supported), 200W,
and 250W. Even with a power cap of 150W, over 60% of
the jobs would remain un-impacted, and less than 10% of
the jobs would be impacted based on their average power
consumption. Our results identify that power-capping can
be a promising method to conserve power and/or improve
throughput by over-provisioning, without adversely affecting
the performance of GPU jobs.
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Fig. 10: Empirical CDFs of the average job run time and the
average SM, memory,and memory size utilization of all jobs
run by an user.

Takeaway: GPU workloads do not draw most of the
power that is available to them, even at their maximum
draw. This opens up the opportunity to power-cap the
production AI workloads with minimal performance im-
pact and potentially reduce the overall carbon footprint
of deep learning serving systems. While promising as a
research idea, it has not been evaluated for production
workloads. Our evidences further support the design and
representative evaluation of such methods.

However, we caution that over-provisioning a GPU-
accelerated system is quite complex and should be considered
carefully. Specifically, simply provisioning more GPUs may
not be optimal for some systems; instead, existing GPUs
could be supplied lower power. The electricity bill savings
could be invested in buying more CPUs or faster storage
systems instead of buying more GPUs and power-capping
them. This decision requires understanding the user base and
their resource requirements at a given HPC center.

IV. ANALYSIS OF USER BEHAVIOR AND TREND
CHARACTERISTICS

The analysis of general job and utilization characteristics
shed light on some interesting trends. To further analyze these
characteristics, we now investigate how they are affected by
and differ based on the behavior of different users.

Over the duration of our study, 191 unique users executed
47,120 jobs in total on the Supercloud system. All users
who executed GPU-accelerated jobs do not display the same
average characteristics. To demonstrate this, in Fig. 10, we plot
the empirical CDFs (across all users) of the average job run
time and the average SM, memory, and memory size utilization
of all jobs run by a user. User behaviors vary greatly, especially
when it comes to the average job run times. The median
average job run time of users is 392 minutes; 25% of the
users have an average job run time of fewer than 135 minutes,
while 25% of the users have an average job run time of more
than 823 minutes. In fact, some users have an average job
run time of as low as 49 seconds, while others have runtimes
in the order of days. Similarly, users also have varying job
resource utilization behaviors, with 50% of the users having
an average job SM utilization of 10.75%, memory utilization
of 1.8%, and memory size utilization of 11.2%. Most users
have very low average job resource utilization. Only 32% and
5% of the users have an average SM and memory utilization
of > 20%, respectively.
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While the behaviors vary from user to user, the job
characteristics have lower variance when averaged by user
than in the general scenario (compare Fig. 10 to Fig. 3(a)
and Fig. 4(a)). The reason for this is that the top few
users submit most of the jobs and their average behavior
is reported. While a median user submits 36 jobs, top 5%
of the users submit 44% of the jobs, and top 20% of the
users submit 83.2% of the jobs. This Pareto Principle is as
expected and has been observed on other production HPC
systems as well [35], [43], [49]. This highlights the point
that different users have different job requirements: some
run only short-running and low-utilization batch jobs, some
run long-running and high-utilization machine learning jobs,
and others run long-running but low-utilization interactive
jobs. Different users’ needs must be considered for the
most efficient scheduling and management of jobs. One way
that we achieved this is by providing different interfaces to
submit map-reduce, batch, and interactive jobs (i.e., users
classify which job class their job belongs to). This allows
the scheduler to better understand their needs and provide
effective resource management. The system can be further
improved by recognizing the needs of other types of jobs as
well.

Takeaway: Our Supercloud users have a variety of
average job run times and GPU resource utilization
characteristics. Different users have different require-
ments and expectations from the system based on the
types of jobs that they run. The system can be best
served by identifying those needs and providing easy-
to-use solutions to improve efficiency and throughput.
In our operational experience, we implemented one such
solution by providing different interfaces for different
job types for scheduling. While effective, this comes
at a greater caution-cost on Supercloud: the complexity
of managing more interfaces and some users poten-
tially over-burdening all interfaces. Such solutions are
effective, but require greater investment in user-base
management.

While the average job behaviors vary across different users,
an interesting question to investigate is the degree to which
the job behaviors vary among the jobs submitted by a user.
For example, if all or a majority of the jobs of a user have
similar behavior, then the resource demand of that user can be
relatively easily predicted and met. On the other hand, if a user
has a seemingly stochastic submission of multiple different
types of job behaviors, then that user is more difficult to serve
efficiently.

Fig. 11 shows the empirical CDFs (across all users) of the
CoV of job run times and the CoV of SM, memory, and
memory size utilization across all jobs run by a user. The
figure shows that the behavior of different jobs submitted by
a user varies greatly for an average user. As an instance, the
median CoV of job run time of a user is 155%; 75% of the
users have a job run time CoV of more than 86%, while 25%
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Fig. 11: Empirical CDFs of the variance in the job run times
and the variance in SM, memory, and memory size utilization
across all jobs run by the same user.
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Fig. 12: The Spearman correlation of the number of jobs and
GPU hours of an user with job characteristics.

of the users have a job run time CoV of more than 227%.
In fact, some users have a job run time CoV of over 1000%.
Similarly, a median user also has a high degree of variance
among the jobs in terms of their resource utilization behaviors:
the median CoV of SM utilization is 121%, that of memory
utilization is 182%, and of memory size utilization is 99%.
This finding reveals that individual users have a diverse set of
job behaviors and their jobs cannot be treated as a monolith.

Nonetheless, even if an average user does not have
predictable behavior, if the users who tend to run the most
number of jobs and consume the most number of GPU hours
(“expert” users) have predictable behaviors, then learning
about their behaviors could help make the system more
efficient in general. To identify such trends, in Fig. 12
we correlate the number of jobs and the total number
of GPU hours of a user with the average run time and
utilization characteristics and their variances. The correlation
used is Spearman correlation, which performs ranked
linearity correlation and is useful for detecting monotonic
relationships. A correlation of plus or minus one reveals a
strong positive or negative relationship, respectively, while
a correlation of zero reveals no monotonic relationship. The
figure shows that a high positive correlation exists between
the number of jobs / GPU hours of a user and the average
SM/memory utilization across jobs (note that all correlations
are statistically significant: p-value <0.05). This means that
expert users are likely to use GPU resources more efficiently.
However, the correlation between the number of jobs / GPU
hours of a user and the CoV of SM/memory utilization
across jobs is quite low (≤ 0.5), especially in the case of SM
utilization. The results show that an expert user is not likely
to have more predictable job behavior just because they run
more jobs and consume more GPU hours. The top users are
just as likely as other users to have a high variance in job
characteristics.
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Fig. 13: (a) Fraction of jobs that run on different number of
GPUs. (b) Fraction of the system’s total GPU hours consumed
by jobs of different sizes.

Takeaway: A typical Supercloud user submits multi-
ple jobs with a diverse set of run time and resource
utilization characteristics. While an “expert” user with
many jobs and GPU hours is likely to use GPU re-
sources more efficiently, their jobs still may have a
wide variety of utilization characteristics. This makes
it difficult to predict the behavior of individual users.
This is an opportunity for designing new strategies to
apply ML-based techniques to predict user behavior in
a lightweight manner, suited for production AI-enabling
supercomputers.

V. EXAMINATION OF JOBS WITH MULTI-GPU USAGE
REQUIREMENTS

So far we have discussed the general characteristics of jobs
of all sizes in terms of the number of GPUs that they run
on. However, jobs with the requirement of multiple GPUs
implicitly have a higher resource demand. Therefore, it is
useful to separately study their behavior and GPU resource
utilization characteristics.

We begin by first calculating the fraction of jobs that run
on multiple GPUs. Fig. 13 shows that about 84% of all jobs
run on a single GPU and about 16% run on two GPUs or
more. This means that a significant number of jobs are multi-
GPU (7.5k of the 47k jobs) and they consume a substantial
percentage of all GPU hours consumed on the system (50%).
However, only ≈2.4% of the jobs run on more than two GPUs
and less than 1% of the jobs run on nine or more GPUs. This
finding is consistent with what is observed on other GPU-
based systems [23], [27], [61]. For example, on Microsoft’s
Philly clusters, 93% of the jobs are run on one GPU and only
2.5% of the jobs run on more than four GPUs [23].

While the percentage of jobs that run on multiple GPUs
is 16%, when we break down by users, about 60% of the
users have run at least one multi-GPU job, 13% of the users
have run jobs with at least three GPUs, and 5.2% of the
user users have run jobs with nine or more GPUs. Thus,
the significance of multi-GPU jobs is appreciable and they
should be characterized, as we do next.

Takeaway: A non-negligible fraction of the jobs on
our Supercloud system are multi-GPU jobs. In addition,
about 60% of the users run at least one multi-GPU
job. Our results indicate that characterizing these jobs
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Fig. 14: (a) Variance in the utilization of SM and memory
resources across all GPUs of multi-GPU jobs. (b) same as (a)
except idle GPUs are removed from the variance calculation.

is important because of their notable footprint in terms
of GPU hours consumed – more architectural research is
needed to benchmark and characterize multi-GPU jobs.

We now look at the characteristics of multi-GPU jobs. One
may expect that requiring multiple GPUs potentially results
in longer queue wait times as it may take longer for the
resources to become available. However, our analysis shows
that the median queue wait time of single-GPU jobs is 3
seconds, the median wait time of 2-GPU jobs is 1 second, the
median wait time of 3-8 GPU jobs is 1 second, and the median
wait time of >8-GPU jobs is 1 second (results not plotted).
Thus, there is no significant difference. In most cases, multi-
GPU jobs are scheduled quickly with a high priority and are
placed as densely as possible, either on the same node or on
neighboring nodes on the network interconnect. In terms of
other job behavior properties, we again observe no significant
difference between the run times and utilization characteristics
of single-GPU jobs and multi-GPU jobs.

However, this does not necessarily mean that an individual
multi-GPU job has the same utilization of SM and memory
resources across its GPUs. Fig. 14(a) shows the empirical
CDFs of the coefficient of variation of the SM utilization,
memory utilization, and memory size utilization across all
of the GPUs of a multi-GPU job (only multi-GPU jobs are
included in the CDFs as single-GPU jobs would have a
CoV of zero). The figure shows that about 50% of the jobs
experience little to no variability among the GPUs in terms
of the resource utilization of all three types of utilization.
However, we observe that about 40% of the jobs experience
very high CoV across all three resources. The reason for this
is because these jobs have half or more of their GPUs idle,
i.e., a sizable fraction of the GPUs have an average utilization
of close to zero for all resources. However, if only the active
GPUs of the job are considered for the CoV calculation, the
CoV tends to be much lower (Fig. 14(b)). This demonstrates
that the resource consumption behavior across GPUs remains
uniform for multi-GPU jobs.

Takeaway: Multi-GPU jobs have similar run times and
utilization characteristics as single jobs and do not ex-
perience an increase in wait times in proportion to their
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Fig. 15: (a) Distribution of mature, exploration, development,
and IDE jobs. (b) System’s total GPU hours consumed by
different types of jobs.

sizes. While 40% of the multi-GPU jobs have idle GPUs,
the resource consumption tends to be similar among
active GPUs. This allows the same resource sharing
technique to be deployed across all GPUs of multi-GPU
jobs on Supercloud without requiring GPU-specific fine-
tuning or resource utilization instrumentation but needs
system-level techniques to avoid pathological cases. In
our operational experience, educating and training users
on using multi-GPU has been one of the key efforts
at Supercloud. As the HPC community moves forward
with more GPU-accelerated deep-learning workloads,
user education and training for multi-GPU jobs will
become one of the most critical aspects, akin to scaling
CPU jobs to multiple nodes.

VI. INVESTIGATION OF THE ALGORITHM DEVELOPMENT
LIFE-CYCLE

The last aspect of the Supercloud system that we analyze
is its unique job classification in terms of different types of
jobs submitted in the process of an algorithm’s development.
As discussed in Sec. II and shown in Fig. 2, Supercloud’s
users submit different types of jobs when designing their
codes: IDE (design algorithm), development (determine re-
source requirement), exploratory (optimize algorithm / deep-
learning model parameters), and mature jobs (finalize the code
state). These jobs have different types of resource consumption
characteristics, as we see next.

Fig. 15(a) shows a breakdown of different types of jobs
along the development life-cycle. Around 60% of all jobs are
mature jobs, i.e., these jobs are completed with a zero exit
code. We found that 3.5% of the jobs are IDE jobs, i.e., these
jobs tend to be interactive jobs that run for a long time and
timeout. About 19% of the jobs are development jobs. These
jobs are run while the algorithm is being developed and the
code is being debugged. Lastly, about 18% of the jobs are
exploratory jobs. These are the jobs that are terminated by
the user before completion as they deem the jobs to be sub-
optimal in the process of determining the optimal algorithm
parameters (e.g., hyper-parameter tuning).

When we look at the breakdown in terms of GPU hours
consumed (Fig. 15(b)), only 39% of the GPU hours are
consumed by mature jobs, while 61% of all GPU hours
consumed on the system are consumed by other types of
jobs. About 34% of the system’s GPU hours are consumed
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Fig. 16: Job characteristics comparison of different categories
of jobs among different resources types.

by exploratory jobs, even though they only make up 18% of
the jobs. This is because a median exploratory job (62 minutes)
runs longer than a median mature job (36 minutes). The
behavior is due to the fact that training deep learning models
require many hyper-parameter-tuning jobs that get terminated
by the user once they realize that the job hyper-parameters are
not optimal. Users have a lower utility for these jobs as there
are other hyper-parameters that enable faster/better training.
This is a new trend on HPC systems that primarily run deep
learning jobs.

In addition, development and IDE jobs consume ≈27% of
all GPU hours. A disproportionate 18% of the GPU hours
are consumed by IDE jobs (only 3% of all jobs). This is
because IDE jobs run for a long time until their timeout limit
(the timeout limit is 12 hours or 24 hours, depending on the
requested amount) and they reserve the GPU resources during
their entire run.

Takeaway: As the GPU-accelerated Supercloud system
is geared toward deep learning jobs, a large portion of the
jobs are exploratory as they are in the process of hyper-
parameter tuning. For such workloads, users with similar
characteristics like Supercloud can benefit from a multi-
tier system design, with GPUs of different qualities being
priced differently, so that they can run their lower-utility
exploratory jobs on the slower GPUs. A considerable
number of jobs on the Supercloud system are also devel-
opment or IDE jobs that run until they encounter a failure
or timeout. To ensure that these jobs do not lose their
state, there is a growing need for architectural and system
support for low-overhead checkpoint/restart mechanisms
and support for fast persistent storage. More generally,
architectural techniques that co-exploit hardware relia-
bility, user-induced job termination, and model-accuracy
curve are required to minimize the impact of less-reliable
or fail-slow hardware.

Next, we consider the differences among the job
characteristics of the different types of jobs. Understanding
these differences can help system administrators identify
and mitigate the effects of low resource utilization. Fig. 16
shows the box-plots (the center line shows the median and
the top and bottom of the box show the 25th percentile and
the 75th percentile, respectively) of mature jobs, exploratory
jobs, development jobs, and IDE jobs for characteristics
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Fig. 17: (a) Distribution of users and their respective fraction
of all jobs categorized by different job types. (b) Distribution
of users and their respective total GPU hours consumed
categorized by different job types.

such as (a) SM utilization, (b) memory utilization, and (c)
memory size utilization. The figure shows that compared
to mature and exploratory jobs, development and IDE jobs
have a much lower resource utilization. As an instance,
for SM utilization, the median SM utilization of mature
jobs, exploratory jobs, development jobs, and IDE jobs is
21%, 15%, 0%, and 0%, respectively. In fact, even the
75th percentile SM utilization of IDE jobs (which make up
3.5% of all jobs, but consume 18.2% of all GPU hours) is
0%. This indicates that while development and IDE jobs
run for a comparably long time and reserve considerable
GPU resources, they do not use those resources effectively.
Detecting this lack of resource usage and co-scheduling
other jobs that can use these resources has the potential of
considerably reducing the resource-usage inefficiency caused
by development and IDE jobs, even if they run for a long time,

Takeaway: Compared to mature and exploratory jobs
on Supercloud, development and IDE jobs do not ef-
ficiently consume the GPU resources that they run on.
More dynamic runtime detection and reactive mitigation
techniques are needed to identify such jobs while they
are running. Other jobs that need the GPU resources can
be co-run with them to improve system throughput and
reduce the sub-optimal use of GPU resources.

Lastly, we investigate how user behavior is reflected in the
breakdown of different types of jobs. While it is expected that
a small fraction of the users has the most amount of resource
usage corresponding to all four types of jobs, it is useful to
observe if users experience high rates of exploratory, devel-
opment, and IDE jobs in comparison to their rates of mature
jobs. This can help identify emerging trends in HPC users,
which traditionally mostly execute scientific applications and
codes that have been mature for years, if not decades [24],
[49]. Fig. 17(a) shows the division of the four types of jobs
for different users. The x-axis shows the users normalized from
0% to 100%, sorted in the order of their fraction of all jobs
that are mature. The y-axis shows the percentage of different
types of jobs for each user. The figure shows that for more than
50% of the users, the percentage of all jobs that are mature is
less than 40%.

Fig. 17(b) shows a similar classification of the four types

of jobs for the percentage of total GPU hours consumed by
the user. The x-axis shows the users normalized from 0% to
100%, sorted in the order of their fraction of GPU hours
that are mature. The y-axis shows the percentage of GPU
hours consumed by different types of jobs for each user.
The figure shows that for more than 50% of the users, the
percentage of GPU hours that are consumed by mature or
exploratory jobs is less than 20%. The rest of the GPU hours
are consumed by exploratory, development, or IDE jobs. In
fact, for more than 25% of the users, exploratory, development,
and IDE jobs constitute over 60% of all of their GPU hours.
This trend reflects the changing algorithm development life-
cycle employed by HPC users on machine-learning-oriented
systems.

Takeaway: A large fraction of the users leverage the Su-
percloud system for exploratory, development, and IDE
workloads. This trend reflects a paradigm shift on HPC
systems as they move toward catering GPU-accelerated
artificial intelligence and machine learning workloads,
which are actively experimented with and evolve at a
much faster rate than traditional HPC scientific codes
and workloads.

VII. RELATED WORK

In this section, we present the work related to our study. The
work in this area can be classified into the following broad
categories.
System Operations and Management. System operators and
researchers using different systems have analyzed characteris-
tics of their systems, including recent studies targeted toward
deep learning workloads on GPU systems [3]–[5], [22], [35],
[40], [49], [53], [56]. Our work adds to this collection by
characterizing and demonstrating newer trends such as the
observation that most GPU jobs are not likely to be adversely
impacted, even under an aggressive power-cap.
Job Arrival and Scheduling. Characterizing job arrival pat-
terns and scheduling them efficiently has been the focus of
many HPC researchers [25], [31], [35], [43], [46], [49]. While
HPC jobs typically have to wait in queue for long times [49],
[52], we demonstrate that jobs on our system only have to wait
for a few minutes as a result of our resource sharing policy.

HPC User Behavior. Some of the previous works have
attempted to capture the behavior of an average HPC-system
user [35], [45], [57]. For example, Schlagkamp et al. [45]
observed that users often overestimate resource requirements
in terms of the required number of nodes and run time.
In contrast, we show that the users attempt to determine
the resource requirements of their jobs actively during the
development life-cycle.
Failure Characterization and Impact. Extensive research

has been conducted about the characteristics and impact of
CPU/GPU-failures on an HPC system [12], [14], [19], [26],
[30], [32], [51], [54], [55], [59]. These studies focus on
performing a long-term study of failures on a supercomputer
with the goal of accurate prediction. While generally jobs that

11



time out or have a runtime failure are considered failed jobs,
our study is the first-of-its-kind to study non-failed, but non-
matured jobs and demonstrate their impact on the resource
consumption footprint of an HPC system.
Node Sharing and Co-Scheduling. Previous studies have ex-
plored the idea of sharing CPU or GPU nodes among multiple
co-located workloads [2], [7], [8], [13], [18], [29], [37], [58],
[61]. For example, Gandiva [58] and Gandiva-Fair [7] use
the concept of time-sharing to swap applications in and out
depending on their idle and active phases, while Gavel [29] and
GSLICE [13] use space-sharing to run multiple applications
simultaneously using Nvidia MPS. Our findings of active/idle
GPU phases, uniform work across GPUs, varying resource
utilization, and low utilization of many development/IDE jobs
support the need for dynamic and reactive resource-sharing
techniques to improve efficiency and throughput.

VIII. DISCUSSION AND CONCLUSION

In this study, we presented lessons learned from system
operations and characterization and analysis of job and user
behaviors on an active GPU-accelerated HPC system. In this
study, we examined the resource consumption footprint of
jobs using Supercloud’s unique job classification and provided
strategies to overcome resource under-utilization.

To the best of our knowledge, this study is the first work
to classify the deep learning jobs in mature and non-mature
jobs. Our study reveals that almost 60% of GPU hours are
being spent on exploratory, developmental, and IDE jobs.
This is the first study to show that jobs have irregular and
unpredictable utilization phases. We discovered that even jobs
submitted by the same user vary widely in terms of their
resource consumption characteristics. This is, in contrast to,
widely held beliefs in the traditional HPC world that jobs
from the same user are often very similar. Hence, user-specific
predictive resource management strategies may not remain
effective. Our relevant framework, data, and project updates
are available publicly at https://dcc.mit.edu/

Finally, we discuss various potential recommendations and
areas for future investment for system architects, operators,
and users.

I. System architects. Our analysis provides evidence
that it is a productive strategy for system designers to
focus on providing more hardware support for transparent
and interference-free co-location, an already important
consideration for CPUs. Second, our data suggest that GPU
hardware reliability is currently not a concern (GPU reliability
has improved drastically over different NVIDIA generations)
— most AI-centric jobs fail or are killed by the users for
other reasons (e.g., hyperparameter tuning).

High-performant GPUs, but offering different levels of
reliability and price. Our work makes a case that it might
be economical for vendors to produce high performance, but

potentially less resilience and error correction support, at
a lower production cost and market price. Same-generation
GPUs from the same vendor can have multiple versions at a
different price range.

Multi-Instance GPU (MIG) support in Nvidia GPUs is a
useful step toward mitigating the low-utilization challenge
via co-location. Our work provides further improvement
directions. For example, resetting MIG configurations require
GPUs to be idle and takes unto few seconds with user
intervention, and determining the optimal configuration
for a set of co-located workload requires multiple manual
resetting trials and model checkpointing overhead. Hardware
support for automatic re-partitioning without job interruption
would be ideal, especially when all jobs belong to the same
user/tenant (limited privacy concerns).

II. System operators. Our real-world data-based analysis
encourages system operators to consider the benefit of
multi-tier GPU-accelerated data centers. Instead of buying
only the latest-and-fastest GPUs, it might be more cost-
effective to mix them with some less-expensive, less-powerful,
or even less-reliable GPUs for exploratory and IDE jobs.
This recommendation is useful toward guiding our next
system acquisition at our data center. This approach also
increases the capacity of the data center under the same cost
budget and reduces the job wait time. Secondly, the system
operator can leverage the low-resource utilization based on
the job category to incentivize users for co-location, using
coupon-based incentives or other mechanisms [34].

III. Users. Users should recognize the unique resource-
consumption aspects of deep learning jobs — developmental
and exploratory jobs may not consume the same amount of
GPU resources, or even benefit from high resource allocation
(or faster GPUs).

Different GPU types for exploratory and matures jobs,
and incentive for co-location. If there is an option, users can
use cheaper and less powerful GPUs for exploratory jobs and
employ faster and more expensive GPUs selectively for mature
jobs. Similarly, based on our data, users have an incentive to
opt for co-location for their exploratory jobs.
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