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ABSTRACT

Online inference is becoming a key service product for many busi-
nesses, deployed in cloud platforms to meet customer demands.
Despite their revenue-generation capability, these services need to
operate under tight Quality-of-Service (QoS) and cost budget con-
straints. This paper introduces Kairos 1, a novel runtime framework
that maximizes the query throughput while meeting QoS target and
a cost budget. Kairos designs and implements novel techniques to
build a pool of heterogeneous compute hardware without online
exploration overhead, and distribute inference queries optimally
at runtime. Our evaluation using industry-grade machine learning
(ML) models shows that Kairos yields up to 2× the throughput of
an optimal homogeneous solution, and outperforms state-of-the-art
schemes by up to 70%, despite advantageous implementations of
the competing schemes to ignore their exploration overhead.
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1 INTRODUCTION

As machine learning (ML) models are becoming widely adopted
in commercial services, the service providers will utilize cloud
computing resources to serve their customers, and online inference
has become a highly critical application for both on-premise and
public cloud computing platforms [1–3]. As a result, an increasing
amount of research effort is dedicated to improving the capability of
cloud systems for inference workloads [4–9]. Serving ML inference
is particularly challenging because they pose additional constraints
and objectives beyond meeting latency deadlines. For example,
business service providers can utilize the pay-as-you-go model
to rent cloud computing instances, but they seek the following
desirable objectives: (1) meet the quality-of-service target (QoS
constraint, e.g., 99% of queries finish within 100ms); (2) efficient
under a fixed cost budget; (3) process as many queries as possible
per time unit (i.e., high query throughput).

Cloud platforms provide a wide range of virtual machines (VMs),
and each comes with different hardware types (e.g., different CPU,
GPU, and memory). While there have been previous attempts at
providing partial solutions to exploit hardware heterogeneity in
datacenter [10–12], edge [13, 14], and cloud [15–17], we lack a
complete solution to achieve all the desirable properties (Sec. 2).
In particular, prior schemes do not consider the full aspects of
inference serving: heterogeneous resource allocation and intelligent

query distribution among allocated hardware resources.

1Kairos has been accepted at the 32nd ACM International Symposium on High-
Performance Parallel and Distributed Computing (HPDC ’23)

Note that a heterogeneous pool of cloud compute instances (a
mixture of GPUs and CPUs) appear naturally more promising for
inference serving as they provide the opportunity to balance the
trade-off between cost and performance (QoS target). More power-
ful and expensive instances can be used toward satisfying strict QoS
targets for larger queries. Less powerful and relatively less expen-
sive instances can be used for executing smaller queries that will not
violate their QoS on such instances, and thereby, provide a chance to
reduce the overall cost of the query serving system. Consequently,
many prior techniques have opportunistically taken advantage of
hardware heterogeneity to improve query throughput or meet QoS
target [10, 11, 13, 14, 17]. However, none of them provide a system-
atic methodology to efficiently optimize the heterogeneous config-
uration (i.e., determine the number of GPUs and CPUs of different
types). Therefore, while prior works are heterogeneity-aware,

they do not proactively optimize the hardware heterogeneity

under a cost budget.

In fact, we show that some heterogeneous configurations can
perform significantly worse than an otherwise cost- and QoS-
equivalent homogeneous configuration (Sec. 4). Determining a het-
erogeneous configuration requires online evaluation of multiple
potential candidates. Unfortunately, this approach is not suitable
when the query load changes or other system parameters change,
since it requires invoking the exploration process frequently and
potentially evaluating configurations that are worse than homo-
geneous configurations. This has been the main hindrance for the
community to exploit heterogeneous computing hardware.Kairos
breaks this limitation and designs novel techniques to take

full advantage of hardware heterogeneity while meeting QoS

constraints under a given cost budget.

Summary of Contributions. We design and implement Kairos, a

novel runtime framework to maximize throughput under cost budget

and QoS constraints for machine learning inference tasks. Kairos
breaks away from searching the complex and vast configuration
space of heterogeneous hardware. Instead, Kairos devises two
techniques to quickly find a high-throughput heterogeneous con-
figuration without exploring.

First, Kairos designs an efficient query-distribution mechanism
to distribute queries among different cloud computing instances for
any given heterogeneous configuration to maximize throughput
– formulating this as a bipartite matching problem and solving it
efficiently. Second, Kairos approximates the upper bound of the
throughput that a heterogeneous configuration can provide at the
best. Then, Kairos uses the similarity in top-ranked heterogeneous



Table 1: Overview of related works and Kairos.

Inference

QoS

Through-

put

Cost Query

Mapping

Proactive in

Heterogeneity

No Online

Exploration

Miscellaneous Notes

Paragon [10] ✘ ✔ ✘ ✔ ✘ ✘ Requires prior data for training

TetriSched [11] ✘ ✘ ✘ ✔ ✘ ✔ Supports user-based reservation

S3DNN [13] ✔ ✔ ✘ ✔ ✘ ✔ Uses supervised CUDA stream

DART [14] ✔ ✔ ✘ ✔ ✘ ✘ Profiles layers and applies parallelism

Scrooge [15] ✔ ✔ ✔ ✘ ✘ ✘ Chain execution of media applications

Ribbon [16] ✔ ✔ ✔ ✘ ✔ ✘ Bayesian Optimization for allocation

DeepRecSys [17] ✔ ✔ ✘ ✔ ✘ ✘ Schedules using profiled threshold

Clockwork [18] ✔ ✔ ✘ ✔ ✘ ✔ Consolidates latency for predictability

Kairos ✔ ✔ ✔ ✔ ✔ ✔ Full heterogeneity support

configurations to pick the most promising heterogeneous config-
uration without online evaluation. Our evaluation confirms that
Kairos’s configuration choice is often the near-optimal config-
uration across different machine learning models in production,
where the optimal configuration is determined via exhaustive of-
fline search of all heterogeneous configurations.

We have leveraged industry-grade deep learning models to drive
the evaluation of Kairos’s effectiveness [17] – although we note
that Kairos’s design is generic and not tuned for particular kinds
of ML models. Our evaluation shows that compared to the opti-
mal homogeneous configuration, Kairos is able to significantly
increase the throughput (by up to 2×) under the same QoS target
and cost budget. Kairos outperforms the state-of-the-art schemes
in this area (Ribbon, DeepRecSys, and Clockwork [16–18]) by up
to 70%, despite advantageous implementations of those competing
schemes by ignoring the exploration overheads and improving the
query distribution technique. Our proposed solution, Kairos, is
publicly available as an open-source package at https://doi.org/10.
5281/zenodo.7888058.

2 RELATEDWORK

Table 1 lists the relevant works in exploiting heterogeneous hard-
ware and inference serving. Overall, Kairos is the only work that
satisfies all the desirable properties (table header from left to right):
(i) meets QoS for inference queries; (ii) has service throughput
requirement; (iii) is aware of heterogeneous hardware cost; (iv)
intelligently distributes (or maps) queries among resources; (v)
proactively allocates and optimizes heterogeneous resources; and
(vi) does not need prior knowledge to train a model or perform
online exploration. While some previous works are heterogeneity-
aware (i.e., can efficiently use available heterogeneous hardware),
they do not proactively configure the heterogeneity to optimize
other aspects: query throughput, QoS, and cost budget.

Latency-critical applications are commonly studied in large-scale
datacenter and cloud systems [19–23]. Previous works such as
Paragon [10] and TetriSched [11] have focused on optimizing het-
erogeneous resource utilization [24–27], but their resource hetero-
geneity is pre-determined and sub-optimal, and their target applica-
tions are long-running jobs in datacenters, which is different from
online inference tasks. Some other previous works have relied on

tuning by expertise [28–31], prior profiling [32–35], or historical
training data from similar applications [36–40], and cannot be used
to solve the Kairos problem.

Existing ML inference frameworks [1, 4, 8, 13, 14, 18, 41–47] are
not suitable for exploiting heterogeneous hardware optimally and
may require extensive profiling, Kairos addresses this limitation.
For example, S3DNN and DART are heterogeneity-aware deep
neural network (DNN) inference frameworks [13, 14], but their
hardware heterogeneity is pre-determined. INFaaS [47] selects one
particular hardware type from a pool of devices depending on the
user application, but unlike Kairos, it does not explore serving the
model using different hardware simultaneously. Media application
frameworks such as Llama [46] and Scrooge [15] allocate different
hardware for different stages of the media application inference, but
each query is assigned to the same sequence of hardware types, they
do not distribute queries to heterogeneous resources like Kairos
and are not suitable for general purpose applications.

Ribbon [16] optimizes the serving cost by exploring different
heterogeneous configurations, but compared to Kairos, it still in-
curs Bayesian Optimization exploration overhead and does not
exploit the heterogeneity by intelligently distributing the queries.
DeepRecSys [17] explores heterogeneity between GPUs and CPUs
when serving online queries. However, it does not explore the po-
tential of different CPU/GPU ratios under a cost budget. It uses a
hill-climbing algorithm to find an optimal threshold for query dis-
tribution, but it incurs tuning overhead as the threshold is different
for each heterogeneous configuration. Clockwork [18] consolidates
design choices in a top-down manner for deterministic inference
latencies, but its central controller does not exploit heterogeneous
hardware like Kairos. Compared to all previous work, Kairos de-
livers a full suite of heterogeneity support for cloud service and
considers all key metrics (QoS, throughput, and cost).

3 BACKGROUND

Machine learning inference service. When machine learning
models are trained into maturity, they will get deployed in produc-
tion to provide ML inference service. The service users can submit
inference requests through provided interfaces (e.g., HTTP request),
then get a response. The inference pipeline can have multiple stages
(e.g., data pre-processing, model prediction, post-processing), and

https://doi.org/10.5281/zenodo.7888058
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they are typically packaged into a container image along with the
software dependencies. On the cloud, the inference service provider
can then allocate a set of compute instances and use a resource
manager like Kubernetes to deploy the service. In this work, we
focus on discussing the potential of using a heterogeneous resource
instance allocation – how to efficiently distribute the inference
queries and find a good heterogeneous configuration quickly.

Inference serving with QoS constraints and cost budget. The
inference service has a QoS target, requiring the tail latency (e.g.,
99𝑡ℎ percentile) of queries to be within a limit for a better user ex-
perience. For flexibility reasons and the pay-as-you-go model, busi-
nesses rent computing power from the cloud computing provider
to meet the QoS target, but they also have a budget constraint.
Each compute instance type, rented from the cloud, is associated
with a price ($/ℎ𝑟 ). Given a cost budget, one can only allocate a
limited number of instances to serve as many queries as possible –
that is, maximize the query throughput. The query throughput is
defined as queries served per second (QPS). Since QoS cannot be vi-
olated, we use the allowable throughput, which is the maximum
throughput the allocated instances can serve without causing QoS
violation. In this work, we use allowable throughput, throughput,
and QPS inter-changeably. All of them hold the implicit condition
that QoS is satisfied.

4 MOTIVATION

In this section, we first provide experimental evidence to demon-
strate that a heterogeneous configuration (a configuration can be
a mixture of a few GPU instances, a few instances of CPU type A,
and a few instances of type B) can be better than a homogeneous
configuration under the same cost budget while respecting QoS. But,
it is not always true – and any heterogeneous configuration is not
superior by simply the virtue of heterogeneity.

First, we note that given a certain cost budget, one can choose
to allocate the most cost-effective instances that can meet the QoS
for all queries. We denote such instance type as base instance,
and such strategy as homogeneous serving or homogeneous con-
figuration. However, since inference queries have highly diverse
batch sizes (or query sizes) [4, 16, 17], even though a cheaper but
higher throughput-per-cost instance type cannot meet the QoS (so
it cannot serve standalone as the allowable throughput is 0), it can
still meet QoS for some smaller queries (queries with smaller batch
sizes) due to the lower latency. Another choice is to replace some
base instances with such cheaper instances (denoted as auxiliary
instances), we denote this as heterogeneous serving or hetero-
geneous configuration. Unlike the base instance which comes from
the optimal homogeneous instance, multiple types of auxiliary in-
stances can be used for more flexibility and higher potential.

Are heterogeneous configurations always better? In Fig. 1, we
compare the throughput of homogeneous serving against three dif-
ferent heterogeneous configurations on a Meta production model
RM2 [2] under a fixed cost budget (dashed line). All configurations
shown here respect the QoS target. We use three AWS EC2 instance
types denoted as G1 for base instance, and C1, C2 for auxiliary in-
stances (details in Sec. 7). The (4, 0, 0) homogeneous configuration
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Figure 2: Throughput improvement over homogeneous when

exploring using simulated annealing.

still has some unused budget for 70% of one G1, so we proportion-
ally scale its throughput and cost up till the budget to give it an
advantage. We observe that heterogeneous outperforms homoge-
neous as (3, 1, 3) has 15% higher throughput than (4, 0, 0). However,
heterogeneity is not always necessarily better (e.g., (2, 0, 9) and
(1, 4, 2)). Especially for (1, 4, 2), it indicates that simply raising the
budget is not an ideal approach to gain throughput. Therefore, being
only heterogeneity aware is not sufficient (like previous work). But,

how do we find an optimal configuration like (3, 1, 3)?

Finding a high-performing heterogeneous configuration is

expensive. This is because the search space of possible hetero-
geneous configurations is large, especially when there are more
instance types, the space becomes high-dimensional and each in-
stance type may have multiple instances. Second, evaluating the
throughput of a new configuration is expensive and time-consuming

because it requires service reconfiguration, just allocating new
cloud instances would take significant time (tens of seconds). Also,
during the online search of configurations, each explored configu-
ration may not yield enough throughput to sustain all the queries
- lower throughput than the homogeneous setting. Fig. 2 shows
the limitation of heterogeneous serving during online exploration
using simulated annealing [48]. Although we have pre-filtered out
configurations that yield less than 20 QPS, the majority of explored
configurations (about 70%) are still worse than the homogeneous
serving marked as the red line. QoS violations will occur frequently
if the allowable throughput is below the target level. High cost of

exploring and evaluating has prohibited previous works from finding

a better heterogeneous configuration. Kairos breaks this limitation by

providing an approximate method to quickly determine a promising

configuration without any online evaluation.

Exploiting heterogeneity via intelligent query distribution

is the key to higher throughput. Next, we show that only find-
ing a high-performing heterogeneous is not sufficient. Distributing
diverse queries among heterogeneous instances is key to unlock-
ing higher throughput. In previous results (Fig. 1 and 2), we used
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Ribbon’s [16] mechanism to schedule the arrived query on the best
instance available. To demonstrate the impact of query distribution
strategies, we employ two more complicated query distribution
schemes denoted as DRS [17], CLKWRK [18], and an oracle scheme
(ORCL) (details in Sec. 7) in Fig. 3. We make two observations.
First, all state-of-the-art schemes Ribbon [16], DRS [17] and CLK-
WRK [16] are sub-optimal. Second, one is not necessarily better
than the other and leaves scope for more improvement. Kairos
exploits this opportunity and bridges the gap to the oracle scheme by

designing a new intelligent query distribution mechanism for hetero-

geneous serving.

5 KAIROS DESIGN

In this section, we provide design details of Kairos as a complete
heterogeneous serving solution, illustrated in Fig. 4. The queries sub-
mitted by users will be distributed to the processing nodes, which
consist of heterogeneous compute instances built by a throughput
optimizer. The first design target of Kairos is to efficiently distrib-
ute all the arrived queries of an ML inference service to different
instances in a particular heterogeneous configuration (Sec. 5.1).
Since finding a promising heterogeneous configuration within a
cost budget is also a challenging problem by itself, this is Kairos’s
second design component (Sec. 5.2).

5.1 Kairos Query Distribution Mechanism

Overview. We introduce the query distribution mechanism as
the first design component of Kairos. The key objective is to in-
telligently distribute queries of different batch sizes to different
instances so that the throughput is maximized. In Sec. 8, we con-
firm that Kairos’s query-distribution mechanism is indeed key to
its overall effectiveness and works across different heterogeneous
configurations.

We start withmathematical formulation tomaximize the through-
put for a given configuration. The key intuition is to distribute the
queries in a way that maximizes the available time in all instances
in the future. This maximizes the likelihood of serving more queries
in the future – a higher throughput. We show that this problem
can be transformed and mapped to a min-cost bipartite matching

Table 2: Query distribution optimizer parameters.

List Description

𝐿𝑖, 𝑗 Time needed to finish serving 𝑄𝑖 on instance 𝐼 𝑗 from 𝑡0.
𝑚 Number of queries at time 𝑡0.
𝑛 Number of instances in the configuration.
𝐶 𝑗 Heterogeneity coefficient for instance 𝐼 𝑗 .
𝑇𝑞𝑜𝑠 QoS target latency.
𝑊𝑖 Query 𝑄𝑖 ’s time spent waiting in queue before 𝑡0.
𝑃𝑖, 𝑗 Query-to-instance pairing/assignment matrix.

problem, which Kairos solves to find an efficient query-distribution
plan without knowledge of future query arrivals.

Mathematical formulation of query distribution for through-

put maximization. Our problem objective is: given a number of
queries to be served at the current time 𝑡0, maximize future avail-
ability of instances until a future time instance. This is equivalent to
minimizing the total resource usage since unused resources can be
used to process future queries, indirectly maximizing throughput
at the current time.

Suppose at 𝑡0, there are𝑚 queries in the serving queue, denoted
as 𝑄1, 𝑄2, ..., 𝑄𝑚 , and 𝑛 compute instances in the heterogeneous
configuration, denoted as 𝐼1, 𝐼2, ..., 𝐼𝑛 . Table 2 summarizes the pa-
rameters used in our mathematical formulation. If distribute query
𝑄𝑖 to instance 𝐼 𝑗 , the query completion time from 𝑡0 (𝐿𝑖, 𝑗 ) includes
the serving latency (varies for different 𝑖, 𝑗 ) and if there is a query
currently being served at 𝐼 𝑗 , the remaining time till 𝐼 𝑗 can serve
𝑄𝑖 . For all queries and instances, this time can be represented by
an𝑚 × 𝑛 matrix 𝐿. Namely, 𝐿𝑖, 𝑗 represents the 𝐼 𝑗 instance resource
usage (measured by time) if scheduled to serve query 𝑖 .

It is important to note that the equal wall-clock usage time on
different instance types in a heterogeneous configuration do not
hold the same value. That is, one second of GPU is not equiva-
lent to one second of CPU. To account for this, Kairos employs a
heterogeneity coefficient 𝐶 𝑗 for each instance type 𝑗 .

Definition 1. We define 𝐶 𝑗 ∈ (0, 1] as the heterogeneity coeffi-

cient for instance 𝑗 . It is used to represent the relative importance of

instance 𝑗 compared to other instances in a heterogeneous system. It

is calculated as the ratio of the largest query latency between 𝐼 𝑗 and

the base instance type.

The heterogeneity coefficient helps Kairos weight resources
differently, which aligns with previous task scheduling algorithms
for heterogeneous processors [49, 50]. To determine 𝐶 𝑗 , we first
set the coefficient of the base instance type (e.g., lowest latency
instance) to 1 as a normalization point, then calculate 𝐶 𝑗 as the
latency ratio. We find that using the largest query the system can
serve to measure the latency ratio works well. For example, if the
largest query has latency 100ms on instance 𝐼1, 200ms on 𝐼2 and
500ms on 𝐼3, then 𝐶1 = 1, 𝐶2 = 0.5, 𝐶3 = 0.2. In our system, we
limit the maximum batch size of a query to 1000 because of QoS
constraints. Intuitively, larger queries are more compute demanding
and more prone to violate QoS, thus, they are more suitable for
evaluating the relative importance of instances in a heterogeneous
system. With the introduction of heterogeneity coefficient, the
revised usage time for instance 𝑗 can be expressed as 𝐶 𝑗𝐿𝑖, 𝑗 .

This usage can be calculated for every query/instance pair. Since
the time is relative to the base instance, we can directly sum the



usage up across all instances, and the sum is the aggregated resource
usage. To minimize this, we need to carefully select which 𝑄𝑖 to be
served on which 𝐼 𝑗 . We define these optimization variables as an
𝑚 × 𝑛 binary matrix 𝑃 :

𝑃𝑖, 𝑗 =

{
1 if query 𝑄𝑖 is served by instance 𝐼 𝑗 ,
0 otherwise.

(1)

Then, we express the minimization objective function as:

𝑓 (𝑃) =
𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝐶 𝑗𝐿𝑖, 𝑗𝑃𝑖, 𝑗 (2)

Before optimizing this objective function, we first make an observation

that this formulation maps closely itself to the linear-sum assignment

problem, or in graph theory, a min-cost bipartite matching prob-

lem [51]. Therefore, we leverage the theory of bipartite matching to

formulate and solve this as a bipartite matching optimization.

A bipartite graph has two disjoint and independent sets of ver-
tices 𝑈 and 𝑉 . In our case, 𝑈 contains the queries as vertices, 𝑉
contains the instances as vertices. An edge is available for all query-
instance pairs, and a cost is associated with each edge. A typical
min-cost bipartite matching would have the same number of ele-
ments in𝑈 and 𝑉 , the elements are one-to-one matched with the
total cost minimized. However, in our situation, there is no guar-
antee about the number of queries. If there are fewer queries than
instances, the matching is valid when all queries are matched to a
unique instance, and when there are fewer instances than queries,
the matching is valid when all instances are matched to a unique
query. The cost of each edge between 𝑄𝑖 and 𝐼 𝑗 corresponds to
𝐶 𝑗𝐿𝑖, 𝑗 in Eq. 2.

Before solving this bipartite matching problem to maximize the
throughput, we note that processed queries can only count towards
throughput when served under QoS, otherwise Kairos’s idea of
heterogeneous serving becomes meaningless: one can simply find
the instance type with the highest throughput-to-cost ratio and
do homogeneous serving. To be QoS-aware, we add an inequality
constraint:

(𝐿𝑖, 𝑗 +𝑊𝑖 )𝑃𝑖, 𝑗 ≤ 𝑇𝑞𝑜𝑠 (3)

This constraint states that if serving𝑄𝑖 with 𝐼 𝑗 , the sum of query
completion time on 𝐼 𝑗 and queue wait time before 𝑡0 should be less
than the QoS target. We need to consider the query wait time𝑊𝑖

because not all queries are guaranteed to be scheduled to an instance
(e.g., more queries than instances), they may need to wait in a queue
until more resources become available and restart another round
of query distribution. Considering𝑊𝑖 in Eq. 3 avoids starvation of
unscheduled queries when new queries continuously arrive.

In summary, Kairos formulates an optimization problem and
designs its objective function and constraints for throughput maxi-
mization under the QoS target. The key design principle is respect-
ing the fact that different queries have different speedups from one
instance type to another (e.g., queries with larger batch sizes have
higher speedups from CPU to GPU). By prioritizing higher speedup
queries on more powerful instances, Kairos minimizes resource
usage and prepares maximized slack time for future queries. This is
reflected in Eq. 2, where the 𝐿 matrix implicitly contains this infor-
mation. Fig. 5 visualizes this effect with a 2-instance example. By
efficiently distributing current queries without future information,
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Figure 5: Higher-speedup queries should be prioritized on

more powerful instances to create more slack time. Queries

1 to 4 (arrived in order) are represented in different colors.

Kairos leaves more slack time for the future, thus it can process
all 4 queries while a naive scheme (e.g., FCFS) can only process 3
queries (shaded query does not count towards throughput due to
QoS violation). The superior distribution scheme gives Kairos 33%
higher throughput (4 queries vs. 3 queries processed in time) than
the naive scheme, despite the same hardware.

Putting everything together, the query-distribution problem can
be formulated as follows:

min
𝑃

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝐶 𝑗 (𝐿𝑖, 𝑗 )𝑃𝑖, 𝑗 (4)

s.t. ∀𝑖, 𝑗, (𝐿𝑖, 𝑗 +𝑊𝑖 )𝑃𝑖, 𝑗 ≤ 𝑇𝑞𝑜𝑠 , (5)

∀𝑖, 𝑗,
𝑚∑︁
𝑖=1

𝑃𝑖, 𝑗 ≤ 1,
𝑛∑︁
𝑗=1

𝑃𝑖, 𝑗 ≤ 1, (6)

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑃𝑖, 𝑗 ≥ 𝑚𝑖𝑛{𝑚,𝑛} (7)

where 𝑖 ∈ {1, 2, ...,𝑚} and 𝑗 ∈ {1, 2, ..., 𝑛}. Eq. 6 indicates one-one
mapping, and Eq. 7 guarantees when there are more instances than
queries, every query gets mapped to an instance; when there are
more queries than instances, every instance receives a query.

We note that Kairos’s formulated problem is not a strict min-
cost bipartite matching problem as discussed in traditional bipartite
matching literature because of the QoS constraint in Eq. 5. There-
fore, to guarantee feasibility, Kairos integrates this constraint into
the objective function by modifying the 𝐿 matrix with a condition.
If serving 𝑄𝑖 on 𝐼 𝑗 does not violate the QoS, 𝐿𝑖, 𝑗 is unchanged. If
it violates QoS, then 𝐿𝑖, 𝑗 is penalized by a large quantity (e.g., 10×
of the QoS target). Consequently, Kairos achieves min-cost solu-
tions that avoid QoS-violating𝑄𝑖 -𝐼 𝑗 matching. With this constraint
integration, the new 𝐿 matrix becomes:

𝐿𝑖, 𝑗 =

{
𝐿𝑖, 𝑗 if Eq. 5 is true,
10 ·𝑇𝑞𝑜𝑠 otherwise.

(8)

Then, the Eq. 5 constraint is removed, and the problem with
updated parameter 𝐿 becomes a strict min-cost bipartite matching
problem. Kairos solves this problem using the Jonker-Volgenant
algorithm [52] which is a variant of the widely used Hungarian
algorithm [53], but more efficient in practice [54].

Remarks on assumptions and overhead.We note that Kairos
requires constructing the parameter matrix 𝐿, which requires pre-
dicting the query latency of certain batch sizes on different in-
stance types. Fortunately, ML inference is a fully deterministic



process without conditional branching, thus the latency is highly
predictable [18]. Because the query includes a batch of requests,
Kairos makes sure an instance serves one query at a time without
any resource contention. Thus, the end-to-end latency has a very
low variance (< 0.5% of mean). Previous work has observed that
inference latency can be accurately predicted with simple features
such as request batch size [55]. We have observed similar trends
in our experiments as inference latency is highly correlated with
query batch size: the Pearson correlation coefficient [56] between la-
tency and batch size is greater than 0.99 for all models and instance
types in Sec. 7. As a result, Kairos can model this completely online
with a handful of queries without requiring any prior knowledge
or instrumentation. Kairos starts with a linear model but does not
rely on the model accuracy because it will quickly transition into a
lookup table after processing more queries. All our evaluation re-
sults include this overhead from learning the query latencies online.
In practice, as a noise safeguard, we replace𝑇𝑞𝑜𝑠 with 𝜉𝑇𝑞𝑜𝑠 in Eq. 5,
and setting 𝜉 to be 0.98 such that the completion time predicted to
be within 2% range of the QoS target is considered a violation.

5.2 Kairos Throughput Estimation

Next, we discuss how Kairos quickly reaches a good configuration
from the vast search space with a cost budget constraint as the
second part of its design component. Calculating the cost is easy
but evaluating the throughput of a configuration is expensive and
causes delays in finding a good configuration (Sec. 4), prohibiting
the system from promptly responding to load changes. Kairos takes
a different approach to approximate the actual throughput using
an upper bound. Classical approximation algorithms for unrelated
machines [57, 58] are not applicable to our application scenario of
serving online inference queries using Kairos’s query distribution
mechanism. We have also explored other options such as queu-
ing theory [59, 60] to analytically calculate the actual throughput.
However, due to the dynamic service time (varying batch size), the
heterogeneity in hardware, and unconventional queue discipline
(Sec. 5.1), we cannot fit the problem into a classical𝑀/𝑀/𝑐 queue
framework. Therefore, we take Kairos’s approximation approach
to avoid expensive evaluations.

Designing an application-specific approximation strategy is chal-
lenging [61]. This is also true for Kairos’s throughput approxima-
tion due to QoS restrictions and the complex interactions between
queries and heterogeneous instances. Kairos tackles this challenge
with a method to calculate a throughput upper bound for a given
configuration.With this method, Kairos first finds promising candi-
dates with high upper bounds from search space under cost budget
without any evaluation, then performs aggregation to output a
final configuration. To explain, we first demonstrate the intuition
and calculation for the throughput upper bound given a simple
heterogeneous configuration – that is, one instance of base type
(e.g., GPU) and one instance of auxiliary type (e.g., CPU). Then,
we show how to extend this method to cases where each instance
type can have multiple instances. Eventually, we extend it to cases
where one can have multiple different types of auxiliary instances.

Definition 2. For an inference service, given a particular alloca-

tion of hardware resources, the throughput QPS varies with the query

distribution algorithm 𝜆. The allowable throughput can be represented

Base Instance Auxiliary Instance

QPS=Qb
QPS=Qa

Query size distribution
f

Size = s

Size = s

1-fX√√

Base QPS= Qb
s+

QPS=0

Figure 6: Upper bound calculation parameters. The auxiliary

instance cannot serve larger queries due to QoS.

as a function 𝑄 (𝜆). We define the throughput upper bound 𝑄𝑃𝑆𝑚𝑎𝑥

as a number that satisfies ∀𝜆, 𝑄 (𝜆) < 𝑄𝑃𝑆𝑚𝑎𝑥 .

Essentially, the upper bound of a particular hardware allocation
is a throughput that cannot be exceeded no matter how the system
distributes the query. A throughput number may be the upper
bound for a hardware allocation, but if the allocation changes, it
may not be the upper bound anymore.

We estimate the throughput upper bound as follows: Kairos
makes a simple observation that upper bound estimation is akin
to estimating the maximum possible throughput in an unrealistic
scenario where all queries are available to us at the beginning, and
we can control when each query should arrive – then there is no
need to worry about latency interactions with queuing. Recall that
Kairos’s query distribution mechanism efficiently accounts for
the practical case when we have no control over when queries
will arrive: queries may wait in the queue, and instances may be
idle waiting for queries. Compared to the practical case, our upper
bound calculation ensures queries do not miss QoS by waiting in
the queue and instances do not waste idle cycles that could have
served more queries.

Using the one-base-one-auxiliary simplification example, the
intuition is to determine which instance type is the bottleneck
given a mixture of queries of various batch sizes, and then, the
bottleneck instance type dictates the maximum possible throughput
we can achieve. Formally, let 𝑄𝑏 and 𝑄𝑎 denote the standalone

throughput (QPS) achieved by the base and auxiliary instance type,
respectively. Note that the standalone auxiliary instance cannot
satisfy QoS for all queries. Therefore, 𝑄𝑎 refers to the throughput
achieved when serving only queries that do not violate QoS (i.e.,
queries smaller than size, say 𝑠). Queries larger than size 𝑠 will
then have to be served by the base instance. However, the base
instance throughput when serving larger-than-𝑠-size queries will
be lower than 𝑄𝑏 because larger batches require longer processing
time – we use 𝑠+ to represent queries larger than size 𝑠 (that cannot
be consumed by auxiliary instance) and denote their allowable
throughput running on base instances by 𝑄𝑠+

𝑏
.

We can then partition the query mix into two fractions: 𝑓 for
queries smaller than batch size 𝑠 , and 1− 𝑓 for queries larger than 𝑠 .
If the auxiliary instance is fully occupied with smaller size queries,
it implies that 1−𝑓

𝑓
×𝑄𝑎 of the throughput needs to be executed on

the base instance type, represented by the ratio between 𝑠+ queries
and the𝑄𝑎 queries times the𝑄𝑎 throughput. Sending larger queries
to base and small queries to auxiliary instances also aligns well with
the design principle of Sec. 5.1. However, recall that all the queries
offloaded to base instance are of sizes larger than 𝑠 , and hence, the
base instance can serve them only at the rate of𝑄𝑠+

𝑏
. Fig. 6 shows a

visual representation of the mathematical formulation above.
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Figure 7: Example of how Kairos’s upper bound calculation

works. Scenario 1 represents when the base instance is the

bottleneck and Scenario 2 represents when the auxiliary in-

stance is the bottleneck.

Note that there are only two potential outcomes that dictate the
maximum throughput we can achieve: (1) the base instance is the
bottleneck, and (2) the auxiliary instance is the bottleneck.

If 𝑄𝑠+
𝑏
≤ 1−𝑓

𝑓
× 𝑄𝑎 , that means the base instance is the bottle-

neck: the queries offloaded from auxiliary instance cannot be fully
consumed by the base instance, thus the auxiliary instance cannot
serve queries at the rate𝑄𝑎 . If the maximum throughput is denoted
as𝑄𝑃𝑆𝑚𝑎𝑥 , then, a 1− 𝑓 fraction of all the queries (or queries larger
than size 𝑠) will be served by the base instance at the rate of 𝑄𝑠+

𝑏
.

Hence, the maximum throughput can be estimated as:

𝑄𝑃𝑆𝑚𝑎𝑥 =
𝑄𝑠+
𝑏

1 − 𝑓
(9)

If𝑄𝑠+
𝑏

>
1−𝑓
𝑓
×𝑄𝑎 , that means the auxiliary instance is the bottleneck

and the base instance has some slack left to serve more queries. If
the maximum throughput is denoted as 𝑄𝑃𝑆𝑚𝑎𝑥 , then, 𝑓 fraction
of these queries (queries smaller than size 𝑠) will be served by the
auxiliary instance at the rate of 𝑄𝑎 . So, the 𝑄𝑃𝑆𝑚𝑎𝑥 is equal to 𝑄𝑎

𝑓
.

However, recall that the base instance still has some slack available
to serve more queries. Intuitively, the slack ratio at the base instance
is equal to the difference between 𝑄𝑠+

𝑏
and 1−𝑓

𝑓
×𝑄𝑎 , divided by

its total capability 𝑄𝑠+
𝑏
. Multiplying this slack ratio by the base

throughput, we get the base slack throughput (extra queries the
base can serve when the auxiliary is the bottleneck) as:

Base-slack-throughput = (
𝑄𝑠+
𝑏
− 1−𝑓

𝑓
×𝑄𝑎

𝑄𝑠+
𝑏

) ×𝑄𝑏 (10)

Therefore, the maximum possible throughput is:

𝑄𝑃𝑆𝑚𝑎𝑥 =
𝑄𝑎

𝑓
+ (

𝑄𝑠+
𝑏
− 1−𝑓

𝑓
×𝑄𝑎

𝑄𝑠+
𝑏

) ×𝑄𝑏 (11)

Fig. 7 uses two example scenarios 1 and 2 to demonstrate the
upper bound calculations. In Scenario 1, the auxiliary instance can
only process queries smaller than size 500, and the base has to
spend all its capacity processing the𝑄𝑠+

𝑏
queries, Kairos uses Eq. 9

to calculate 𝑄𝑃𝑆𝑚𝑎𝑥 . In Scenario 2, the base instance still has some
slack capacity left after processing the 𝑄𝑠+

𝑏
queries, and Kairos

uses Eq. 11 to calculate 𝑄𝑃𝑆𝑚𝑎𝑥 .
Kairos’s approach of query mixture partition by batch size 𝑠

would be over-optimistic if the partitions have strong temporal
locality (e.g., if all large queries arrive together before small queries,
then auxiliary instance cannot contribute). However, no such cyclic
behavior has been observed, and due to the law of large numbers,
this upper bound is reasonable over the long term for a large number

of query mixes. We can next extend this method to the case when
each instance type has multiple nodes. If the base instance has 𝑢
nodes and the auxiliary instance has 𝑣 nodes, then, Eq. 9 and 11
can be written as:

𝑄𝑃𝑆𝑚𝑎𝑥 =
𝑢𝑄𝑠+

𝑏

1 − 𝑓
(12)

𝑄𝑃𝑆𝑚𝑎𝑥 =
𝑣𝑄𝑎

𝑓
+ (

𝑢𝑄𝑠+
𝑏
− 1−𝑓

𝑓
× 𝑣𝑄𝑎

𝑢𝑄𝑠+
𝑏

) × 𝑢𝑄𝑏 (13)

The next step is to extend this upper bound estimation for mul-
tiple types of auxiliary instances. Multiple types of auxiliary in-
stances are more challenging since each new auxiliary instance
has its own QoS-respecting region and throughput in that region.
Fortunately, Kairos is not concerned with modeling the accurate
throughput, instead, it only cares about the upper bound estima-
tion of the throughput. Therefore, it makes a relatively simple
approximation that additional auxiliary instance types have the
same QoS-respecting region as the type with maximum 𝑠 size and 𝑓

fraction. This essentially makes the upper bound estimation more
optimistic since some weaker auxiliary instances are assumed to
meet QoS for batch sizes larger than their limit. As our evaluation
confirms (Sec. 8.5), even though this approximation results in a
higher upper bound, configurations still follow similar order as the
actual throughput (a higher upper bound is likely to indicate higher
throughput). With this simplification, the 𝑛-auxiliary-instance-type
general case upper bound can be written. First, we define an inter-
mediate variable:

𝐶 =

∑𝑛
𝑖=1 𝑣

𝑖𝑄𝑖
𝑎 (1 − 𝑓 ′)
𝑓 ′

(14)

where 𝑓 ′ =𝑚𝑎𝑥 (𝑓 1, 𝑓 2, ..., 𝑓 𝑛). This corresponds to 1−𝑓
𝑓
×𝑄𝑎 that

is used to compare with 𝑄𝑠+
𝑏
. The superscript 𝑖 indicates auxiliary

instance type 𝑖 . 𝑄𝑖
𝑎 is the instance type 𝑖 throughput for queries

with batch size smaller than the maximum 𝑠 of all types. We have
the final upper bound formula as:

𝑄𝑃𝑆𝑚𝑎𝑥 =


𝑢𝑄𝑠+

𝑏

1−𝑓 ′ if 𝑢𝑄𝑠+
𝑏
≤ 𝐶,∑𝑛

𝑖=1 𝑣
𝑖𝑄𝑖

𝑎

𝑓 ′ + (𝑢𝑄
𝑠+
𝑏
−𝐶

𝑢𝑄𝑠+
𝑏

)𝑢𝑄𝑏 otherwise.
(15)

Finally, now that we have the formula, we can calculate the upper
bound for all configurations within the cost budget. We describe
the last step that Kairos performs to reach the final configuration
without evaluations. To this end, Kairos can trivially pick the con-
figuration with the highest upper bound from its approximation
method. However, Kairos recognizes that a higher upper bound
does not necessarily mean a higher throughput. To address this,
Kairos applies a similarity-based method to pick a configuration
from the highest upper bound configurations. Kairos first checks if
the top-3 upper bound configurations have the same base instance
number. If true, Kairos picks the highest upper bound configura-
tion. Otherwise, for each configuration with a top-10 upper bound,
Kairos calculates its squared Euclidean distance to the other 9 con-
figurations, sums them up, and picks the one with the least distance
sum. Such metric is commonly used in clustering analysis [62], it is
equivalent to considering all configurations to form a cluster, then



setting the cluster centroid as the configuration that has the least
sum-of-squared error (SSE). The intuition is that there should be
a region for the high throughput configurations, and the distance-
based method lands Kairos in such a region. We find Euclidean
distance to be a reasonable similarity metric, other metrics such as
cosine similarity do not reflect the locality of the promising region.
As our evaluation confirms (Sec. 8), Kairos is able to find a good
configuration for all workloads, and the process does not evaluate
any configuration online.

Remarks on assumptions and overhead. Kairos’s upper bound
based throughput estimation has a one-time warmup phase con-
sisting of two major steps. Firstly, it needs to compute the upper
bound for all combinations of instance numbers of each type under
cost budget. Fortunately, this calculation is quick using the formula
in Eq. 15: for an order of 1000-configuration search space, all upper
bounds can be calculated and ranked within 2 seconds, negligible
compared to even one evaluation (tens of seconds for instance al-
location). Secondly, Kairos’s estimation implicitly assumes that
it can obtain information on the batch size distribution (fraction
𝑓 of batch sizes smaller than 𝑠). This is done via query monitor-
ing to keep track of a number of most recent queries (e.g., 10000
queries), and does not require extra profiling. In addition, to provide
robustness, we demonstrate that Kairos adapts when the batch
size distribution changes and continues to be effective (Sec. 8.4).

Upper-bound-assisted search algorithm.Wealso develop Kairos+,
a variation of Kairos that uses a minimum number of online evalu-
ations to quickly find the optimal (Algorithm 1). The search process
is guided by the estimated upper bounds and is shown to be outper-
forming any other traditional search space exploration (Sec. 8). The
intuition to greedily start from high upper bound configurations
as these configurations have better potential than others, and after
evaluating a number of such instances, the current best throughput
will likely be high enough to filter out a large number of configura-
tions whose upper bounds are lower. Another pruning mechanism
in the algorithm is sub-configuration pruning. If configuration 𝒙1
can add more instances to become 𝒙2, we define 𝒙1 to be a sub-
configuration of 𝒙2. Every time a configuration is evaluated, all
of its sub-configurations get pruned away from the search space
since these sub-configurations will not have higher throughput
than the evaluated one. We note that upper bounds that are tight
to the actual throughput are especially beneficial to Kairos+ since
more configurations can be pruned away.

6 IMPLEMENTATION

Kairos and Kairos+ are implemented as a cloud inference server,
similar to frameworks such as NVIDIA Triton [63]. Every allocated
compute instance hosts a copy of the model, only one query con-
sisting of the batched requests is served by one model copy at a
time. If the model is hosted on a CPU instance, all the CPU cores
will be used. The query distribution mechanism (Sec. 5.1) resides in
a central controller, which performs the optimization to decide the
query-instance mapping. It acts as a client and sends the optimized
inference requests to individual instances (as servers) through the
gRPC protocol [64]. Compared to a traditional load balancer, the

Algorithm 1: Kairos+’s pruning-based algorithm for
quickly finding optimal configuration.
𝑈𝐵𝑠 ← Sort all 𝑄𝑃𝑆𝑚𝑎𝑥 high to low
𝑐𝑢𝑟𝑟_𝑏𝑒𝑠𝑡 = 0 // Highest throughput so far
𝑏𝑒𝑠𝑡_𝑐𝑜𝑛𝑓 𝑖𝑔 = 𝑁𝑜𝑛𝑒

𝑐𝑜𝑛𝑓 𝑖𝑔𝑠 ← list of all configs within cost budget
𝒙 ← variable representing one configuration
foreach𝑈𝐵(𝒙) in𝑈𝐵𝑠 do

if 𝒙 ∈ 𝑐𝑜𝑛𝑓 𝑖𝑔𝑠 then
𝑒𝑣𝑎𝑙 = 𝑓 (𝒙) // Actual QPS evaluation.

if 𝑒𝑣𝑎𝑙 > 𝑐𝑢𝑟𝑟_𝑏𝑒𝑠𝑡 then
𝑐𝑢𝑟𝑟_𝑏𝑒𝑠𝑡 = 𝑒𝑣𝑎𝑙

𝑏𝑒𝑠𝑡_𝑐𝑜𝑛𝑓 𝑖𝑔 = 𝒙
Filter all 𝒄 out of 𝑐𝑜𝑛𝑓 𝑖𝑔𝑠 that satisfies
𝑈𝐵(𝒄) ≤ 𝑐𝑢𝑟𝑟_𝑏𝑒𝑠𝑡

end

Prune away all sub-configs. of 𝒙 from 𝑐𝑜𝑛𝑓 𝑖𝑔𝑠

end

end

return 𝑐𝑢𝑟𝑟_𝑏𝑒𝑠𝑡 , 𝑏𝑒𝑠𝑡_𝑐𝑜𝑛𝑓 𝑖𝑔

central controller is aware of the server heterogeneity and tries to
avoid QoS violations. When queries arrive, the controller estimates
the query latency and uses its estimated server remaining time to
construct the 𝑳 matrix for Eq. 4 and 5.

Notice that the central controller needs to solve the optimiza-
tion problem in real time because the solving time is added to the
inference latency. We implement this using the scipy.optimize
package to solve the bipartite matching problem in polynomial
time. We experimentally confirmed that the sum of network delay
and algorithm runtime for a large 20-query-20-instance matching
is within 0.05ms, and even for hundreds of queries arriving con-
currently the overhead is well within 1ms, negligible compared to
QoS which is typically tens to hundreds of milliseconds. Thereby,
Kairos ensures that its controller does not become the bottleneck
or add significant latency. Furthermore, according to the theory
from POP [65], inference service frameworks like Kairos can scale
to extremely large systems by dividing the system into multiple
sub-systems and running a Kairos instance on each sub-system.

7 METHODOLOGY

Models and QoS constraints. We use industry-scale machine
learning service models to drive the evaluation of Kairos’ ef-
fectiveness. Such ML models are widely used in online services
and have several advantages: (1) wide interest from systems re-
search [16, 66, 67] (2) large customer demand and wide deployment
in industry [68, 69] (3) representative public trace and artifacts
for reproducibility and comparison [2, 17, 70]. Table 3 lists the
models and QoS as 99𝑡ℎ tail latency target based on their service
specifications.

These models are chosen because they represent a wide range
of ML-based applications, the internal architectures are also highly
diverse across models [2, 70]. For example, NCF is a light-weighted
model with limited embedding tables, but the RM2 model is domi-
nated by large embedding tables, while the MT-WND model has



Table 3: Models and QoS targets.

Model Description Application QoS

NCF [71] Collaborative Filtering Movie recommendation 5 ms
RM2 [2] Meta’s recommendation

model class 2
High-accuracy social
media posts ranking

350 ms

WND [72] Google Wide and Deep
recommender system

Google App Store 25 ms

MT-WND
[73]

Multi-Task Wide and
Deep, predicts multiple
metrics in parallel

YouTube video recom-
mendation

25 ms

DIEN [74] Alibaba Deep Interest
Evolution Network

E-commerce 35 ms

Table 4: Different instance types used in heterogeneous pool.

Instance Type Instance Class Price ($/hr)

g4dn.xlarge GPU Accelerated Computing 0.526
c5n.2xlarge Compute Optimized CPU 0.432
r5n.large Memory Optimized CPU 0.149
t3.xlarge General Purpose CPU 0.1664

large parallel DNN predictors for abstract features. The QoS con-
straints for these models cover a wide range and are selected strictly
based on real applications [17, 72, 74]. For example, Alibaba’s e-
commerce service requires tens of milliseconds of response time
while Meta’s social media platform requires hundreds of millisec-
onds.

An important feature of model queries is that they arrive in differ-
ent batch sizes (Sec. 4). Our evaluation is driven by the production
trace of real query batches from Meta [17]. The query inter-arrival
is generated from a Poisson process generating 100s of queries per
second, which has been commonly used in various online inference
serving studies [2, 75–77]. To evaluate Kairos’s response to load
change and sensitivity, we also use Gaussian distributed batch sizes
because Gaussian distribution is another commonly used distribu-
tion for online services [78].

Computing hardware types and cost. We use different hard-
ware types provided by Amazon Elastic Compute Cloud (EC2) for
our evaluation. The compute instances are categorized into four
classes: general purpose, compute optimized, memory optimized,
and accelerated, and represent different cost points. We select an
instance type of each class to form the heterogeneous pool, Table 4
summarizes the compute instance types. These instance types are
selected to collectively cover a wide spectrum of performance and
cost points, as they come from different representative compute-
memory-accelerator classes.

These instance types create a 4-dimensional search space, each
heterogeneous pool corresponds to a certain number of instances
of each type. We select the instance size (indicated by .xlarge
characters) so that all types have 16GB of memory allocation to
host the model. We use the g4dn.xlarge GPU instance type as
the base instance type as only this instance type can meet QoS
for all batch sizes. The other instance types (e.g., c5n.2xlarge) are
considered auxiliary instance types. g4dn.xlarge instance type
uses one NVIDIA T4 GPU. Compared to all other GPU-accelerated
instance types in EC2, g4dn has the best inference performance
– similar to p3.2xlarge instance type (NVIDIA V100 GPU). But,

p3 has nearly 6× higher cost than g4dn, therefore, we use g4dn
as the most cost-effective base instance type to be used in a ho-
mogeneous pool. The cost budget is set to 2.5$/ℎ𝑟 by default for
Kairos evaluation - this budget is chosen purely to ensure the cost
incurred during the evaluation period remains within a reasonable
limit while demonstrating the value of the idea. As our evaluation
confirms, Kairos is not sensitive to the cost budget (e.g., 10$/ℎ𝑟
budget) and is not tuned to work specifically only for certain cost
budget caps. Kairos respects the budget cap as a constraint – con-
sistent with our design goal.

Metrics.Our main evaluation metric remains the throughput (QPS)
under QoS (Sec. 4). To find this allowable throughput, we gradually
increase the arrival rate of queries, until the QoS is violated. In
addition, since evaluating a configuration in the search space is
expensive, we also compare the number of iterations required to
find the optimal configuration for a particular scheme. This part is
only applicable to competing techniques (non-Kairos solutions)
since Kairos does not require online exploration and evaluation.

Competing query distribution techniques.We evaluate Kairos
against three recent ML inference serving schemes.
Ribbon. This scheme focuses only on hardware allocation, there-
fore it has a simple first-come-first-serve (FCFS) query distribution
policy which prefers instances of the base type when multiple in-
stances are available. However, it uses Bayesian optimization to
allocate a near-optimal set of heterogeneous hardware on the cloud,
which is similar to the problem Kairos tries to solve in Sec. 5.2.
DRS. This scheme represents the scheme used in a related work
– DeepRecSys system [17]. It uses a static batch size threshold to
decide whether to serve a query on the base instance (if large than a
threshold) or on the auxiliary instance (otherwise). To determine the
threshold, a hill-climbing sweep is used by DeepRecSys system [17]
to find the threshold that yields the highest throughput.
CLKWRK. This is a QoS-aware query distribution scheme inspired
by Clockwork [18]. It has a focus on latency consolidation, but we
have used its central controller for comparison with Kairos. This
scheme monitors all hardware availability timings and accurately
predicts query latency. A query is guaranteed to be served within
its latency target unless none of the instances can meet the QoS
target. Each instance maintains an individual FCFS query queue.
There is a central controller to keep track of all hardware and queue
timings and send new queries to the instance queues.
ORCL. Oracle scheme is a practically infeasible scheme only for
reference to understand the limits of performance. Oracle always
has higher throughput than other schemes because it knows the
future query arrival patterns. It creates a sequence of queries ac-
cording to batch size distribution and sorts all queries by the batch
size. Whenever a base instance is available, it serves the next largest
query. For auxiliary instances, it is the next smallest query. There
is no wait time for queries, and queries never run on instances
that violate QoS. The throughput on serving the query sequence
is recorded, and among all possible heterogeneous configurations,
the largest throughput is used as the Oracle throughput.
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Figure 8: Kairos yields higher throughput compared to the

homogeneous configuration.
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Figure 9: Throughput comparison of Kairos and Kairos+

against other competing schemes.

Recall that Kairos determines the near-optimal heterogeneous
configuration using its upper-bound-assisted method without any
online evaluation - unlike other competing schemes. Kairos+ is
an online variation of Kairos for optimal configuration, but the
number of online evaluations is limited because it is guided by
Kairos’s upper bound method, as our evaluation discusses next.

8 KAIROS: EXPERIMENTAL EVALUATION

First, we quantitatively evaluate Kairos’s performance compared
to other competing schemes and state-of-the-art approaches. We ex-
plain why Kairos works effectively, and what the key contributing
factors toward its superiority over existing methods are. Finally, we
demonstrate that Kairos performs effectively even under varying
constraints and parameters (e.g., cost budget, QoS, and batch size
distribution).

8.1 Comparison with Best Homogeneous

First, our experimental results (Fig. 8) confirm that Kairos provides
significant allowable throughput improvement compared to the
most competitive base instance homogeneous configuration under
the same QoS constraints and budget (Sec. 7). The number of in-
stances in the homogeneous pool is determined by the maximum
number of nodes that can fit within the cost budget, this is the
optimal homogeneous resource configuration. Note that the cost
budget is not a multiple of g4dn.xlarge price. To compensate for
the wasted budget, we scale up the homogeneous throughput pro-
portionally. But, to evaluate conservatively, we allow the budget slack

of Kairos to be wasted. Despite this, Kairos is still able to provide up

to 2× throughput (i.e., RM2 model) and more than 1.25× in all cases.

8.2 Comparison with State-of-the-Art

Next, our results show that Kairos outperforms competing schemes
of Ribbon, DRS, and CLKWRK in Fig. 9. Recall that the compet-
ing techniques DRS and CLKWRK only focus on distributing the
queries to a set of instances following a certain strategy. They do
not observe that one can build a heterogeneous configuration that
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Figure 10: Kairos+ has low evaluation overhead.

is more performant than a homogeneous configuration under a cost
budget. To provide these techniques an advantage, we provide each
scheme with the best heterogeneous configuration obtained via
Oracle search and compare the throughput against Kairos. Fig. 9
shows the allowable throughput for different schemes.

We make several observations. First, as expected, both DRS and
CLKWRK outperform the Ribbon scheme because Ribbon uses
a simple query distribution mechanism. Second, Kairos signifi-
cantly outperforms all existing techniques and is close to the Or-
acle scheme. For all models, Kairos can provide around 1.5× the
throughput of Ribbon. Kairos’s performance comes from its su-
perior query distribution mechanism (Sec. 5) which focuses on
exploiting the heterogeneity for maximum availability cycles on
all resources combined, while carefully avoiding QoS violations.
Note that DRS is ultimately limited by its threshold-based mech-
anism and misses the opportunity of utilizing different instance
types for smaller queries. CLKWRK actively schedules queries on
instances that do not violate QoS, thus it helps avoid more unneces-
sary QoS violations than Ribbon. However, unlike Kairos, it does
not optimize on heterogeneous instances.

The most attractive aspect of Kairos’s superior performance
and design is that Kairos does not experimentally evaluate het-
erogeneous configurations online – unlike other methods. It uses
its unique approximation method to determine a good heteroge-
neous configuration in one shot. For our evaluation, we provided
additional advantages to all competing schemes by allowing them to

use optimal heterogeneous configuration – determined offline. Even
under this conservative evaluation, Kairos outperforms the DRS
and CLKWRK schemes by up to 44% (Fig. 9).

Lastly, Kairos+ performs slightly better than Kairos. This is
expected because Kairos+ employs a pruning-based online ap-
proach to find the optimal heterogeneous configuration. Never-
theless, Kairos still provides approximately the same throughput
as Kairos+ without any online evaluation. Next, we discuss the
impact of online configuration searches.

8.3 Online Optimal Config. Exploration

Among all competing schemes, only Kairos and Oracle do not
require online evaluation, others need to evaluate configurations
online to find the optimal one for their query distribution mecha-
nism. One may ask: how much overhead does Kairos save from
avoiding online evaluation? In our previous result (Fig. 9), the im-
pact of online evaluation is not included. Fig. 10 shows the number
of evaluations each online technique requires to find its optimal
configuration (on log scale). We observe that Ribbon and DRS often
need to evaluate 5%-30% of the search space to reach the opti-
mal configuration, and hence, the maximum throughput they can
achieve is delayed by the length of this exploration period.
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Figure 11: Kairos+ versus competing search algorithms.
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Figure 12: When query size probability distribution changes,

the throughput of evaluated configurations.

For a fair comparison, in Fig. 10, we augment all competing tech-
niques with the same online configuration exploration algorithm
as Kairos+. We note that Kairos+ consistently evaluates less than
1% of the search space for all models, outperforming competing
schemes despite using the same search algorithm. Similar trends
are observed, even with other non-Kairos+ online exploration
algorithms such as genetic algorithm, simulated annealing, etc.

A related inquiry is: is calculating the throughput upper bound
and leveraging it toward online exploration in Kairos+ useful? Will
any other alternative search methods such as Ribbon quickly find
the same optimal configuration that Kairos+ finds? We use ran-
dom search (RAND), genetic algorithm [79] (GENE), and Ribbon’s
Bayesian Optimization as competing search algorithms and evalu-
ate the number of evaluations compared to the Kairos+ technique.
We purposely provide these competing algorithms with the same
sub-configuration pruning mechanism as Kairos+ in Algorithm 1
to save some iterations. But, as Fig. 11 shows, competing methods
still require significantly more online evaluations than Kairos+.
These results essentially decouple the effects of Kairos’s two com-
ponents of query distribution and search space evaluation, showing
that they both are critical for quickly achieving a configuration that
performs well. The advantages of Kairos as a technique that can
quickly find a good configuration are further emphasized.

8.4 Timely Reaction to Load Changes

Previous results demonstrate that, besides a higher throughput,
Kairos’s major benefit is from eliminating the time overhead to find
a promising configuration. Fig. 12 provides further experimental
demonstration to substantiate this. When the query load or its
distribution changes, the optimal configuration changes. In Fig. 12,
the query-size distribution changes from Log-normal to Gaussian
(at the vertical dashed line) for a sample model (RM2), and the first
20 evaluated configurations of transient response are shown. All
schemes respond to this change and restart the search process.

In Fig. 12, Kairos reaches a near-optimal configuration in one
shot.Without online evaluation, its throughput is 2×more than that
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Figure 14: Impact of changing query distribution scheme.

The dashed horizontal line indicates Oracle.

of Ribbon and DRS. CLKWRK is the most competitive scheme, but it
uses 9 evaluations to reach the same throughput as Kairos. To find
the optimal configuration, Kairos+ performs upper-bound-assisted
online search: by its 8𝑡ℎ evaluation, all possible configurations in
the search space have been either evaluated or pruned by upper
bound, and as expected, its final throughput is slightly higher than
Kairos. The throughput of Kairos and Kairos+ are within 15% of
the Oracle (not shown for better figure readability).

8.5 Source of Kairos’s Effectiveness

Kairos’s effectiveness comes from its upper-bound method that
quickly finds a near-optimal heterogeneous configuration. Fig. 13
explains why it can find such configurations. In this figure, the top-
20 highest upper bound configurations are shown with their actual
throughput in red. The star corresponds to the configuration that
Kairos picks after applying its similarity-based criteria to choose
the most promising one from the top 10 configurations. We make
two key observations. Firstly, the actual optimal configuration is
always among the top 10 candidates. Secondly, although the actual
throughput does not follow the upper bounds in strict monotonic
order (i.e., a higher upper bound always means higher throughput),
they still follow the same trend, indicating the optimal configuration
is among the highest upper bound ones. This explains why Kairos
can find a near-optimal configuration without online evaluations.

To further demonstrate the source of effectiveness of Kairos, in
Fig. 14, we pick the RM2 model and plot the experimental through-
put for Kairos’s top upper bound configurations when changing
the query distribution scheme to Ribbon, DRS, and CLKWRK. This
setting is chosen to better understand how the query distribution
mechanism and heterogeneous configuration search by Kairos are
co-designed, and replacing the query distribution mechanism with
any other would result in a worse performance of configuration
search. We make three observations: (i) The upper bound (UB) is
lower than but close to the Oracle throughput (dashed), indicating
that the upper bound is relatively tight and meaningful to be used
in practice. (ii) The calculated (UB) and Kairos’s experimentally ob-
served throughput are close to each other and follow the same trend.
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Figure 16: Kairos’s effectiveness when: (a) batch size follows

Gaussian distribution; (b) query latency noise presents.

This substantiates the design decision to approximate real through-
put using the upper bound. (iii) Kairos’s query-distribution mech-
anism is a key source of its effectiveness. If Kairos only chooses
a configuration based on the upper bound without employing its
query-distribution mechanism, the actual throughput will yield far
from expectation (loose bound) – underscoring the effectiveness of
Kairos’s query-distribution mechanism.

8.6 Parameter Robustness Evaluation

Finally, we evaluate Kairos’s robustness against different parame-
ters. Fig. 15(a) shows that Kairos’s heterogeneity approach offers a
substantial improvement over homogeneous configurations when
the cost budget scales. Notice that non-Kairos schemes would
struggle more in finding a good configuration as the search space
is increased by 4×. Similarly, in Fig. 15(b), when the QoS targets
are set 20% higher, Kairos continues to offer similar improvements
as before (Fig. 8 results are marked by the red dot).

Recall that the query batch size patterns may change over time,
and Kairos can quickly respond to the new patterns without on-
line evaluations (Sec. 8.4). In Fig. 16(a), we show that Kairos still
yields significant benefits over homogeneous serving on Gaussian
distributed batch sizes. Note that the Oracle could also yield lower
improvements – hence, the relative improvement compared to the
previous distribution (red dots) also decreases for some models.
Lastly, since the query distribution scheme of Kairos makes a
realistic assumption that the inference latency can be accurately
predicted, we also show Kairos’s effectiveness when this assump-
tion is relaxed. In Fig. 16(b), we intentionally inject an additive
Gaussian white noise with 5% variance in latency prediction to em-
ulate performance variability in the cloud [80]. Our results suggest
that Kairos is not sensitive to such noise that is common due to
interference or transient hardware degradation, and continues to
offer similar improvements.

9 CONCLUSION

Kairos demonstrates that a mixture of heterogeneous compute
instances can be effectively utilized to maximize the inference
query throughput under QoS and cost constraints. Kairos’s upper-
bound-based method eliminates the need for online configuration

exploration, and Kairos intelligently distributes queries among
heterogeneous instances. Our evaluation shows that Kairos sig-
nificantly outperforms state-of-the art techniques. We expect that
Kairos’s two-pronged approach could potentially find interesting
applicability in other computer system optimization problems.
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