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Abstract—Modern high-performance computing (HPC) and
cloud computing systems are integrating powerful GPUs to
accelerate increasingly demanding deep learning workloads. To
improve cluster efficiency and better understand user behavior
and job characteristics, system operators will collect operational
data for trace analysis. However, previous efforts on these system
logs have lacked the interpretability aspect, and there is no
systematic approach that can be widely applied to different
datacenter traces and return interpretable results. In this work,
we propose a workflow to discover hidden association relation-
ships between collected features of system jobs. The outcome
of our analysis approach yields useful association rules that
can be directly interpreted into operational insights. Using this
approach, we have conducted case studies using the traces of
three large-scale multi-tenant GPU clusters running production
machine learning workloads. We have focused on the observations
of GPU underutilization and job failures, revealing the possible
reasons for these job behaviors and suggesting solutions to
mitigate them. Our case studies have demonstrated the feasibility
of our interpretable analysis workflow, which can be widely used
by more HPC and cloud computing system operators.

I. INTRODUCTION

The rapid development of machine learning (ML) algo-
rithms has resulted in an increasing number of ML-based
applications in various areas such as computer vision [1],
natural language processing [2], and personalized recommen-
dation [3]. As ML models continuously grow larger [4],
[5] and have more and more users, datacenter and cloud
platforms provide high-performance GPUs to accelerate these
workloads. However, due to advances in novel ML models
and new GPU architectures, we need to continuously update
our understanding of the job characteristics and user behaviors
when operating a GPU cluster. For example, a few years
ago convolutional neural network (CNN) models such as
ResNet [6] dominated the ML workloads, while the increas-
ingly popular recommendation models and language models
have shown distinctive memory and compute characteristics
from ResNet [7], [8]. Improving such understanding requires
open-source datasets and portable methodological tools for
analysis – Unfortunately, our HPC community lacks this or
has limited resources. This paper attempts to address this issue.

To keep up with the advances in ML algorithms and accel-
erator hardware, cloud computing, and HPC system admin-
istrators deploy datacenter monitoring and management tools
to collect system operational information such as scheduler
logs and node resource measurements. However, often these
datasets are not made public for deeper community-driven
analysis. This work aims to address this challenge.

Second, performing large-scale analysis on the collected
data is required to enable system operators to have a better
understanding of perspectives such as the resource consump-
tion of the ML workloads, the types of workloads submitted
by the user, and the resource usage patterns and how efficiently
they are used. Although recent works have shown meaning-
ful insights derived from data analysis [9], [10], [11], [12],
these analyses are based on the system operator’s experience,
and such experience varies over time and across different
sites [13], [14], [15], [16]. Unfortunately, we lack a common
methodology and framework that can be easily applied across
datasets to perform analysis. Furthermore, prior works are
mostly focused on black-box-based prediction models, instead
of automatically extracting the relationships between certain
features and the prediction label. This work aims to address
this challenge, too.

In this work, we propose a systematic, widely applicable
analysis workflow to generate interpretable results from a
cluster trace. To make the results directly readable by system
operators and translatable to operation guidance, we adopt
working principles from association rule mining, a popular
data mining technique that has been widely used in areas
of market transaction analysis and bioinformatics [17], [18].
This technique generates association rules that directly re-
flect the strength of relationships between certain grouped
attributes. We apply our designed approach to study the MIT
SuperCloud [10], a GPU cluster that we operate, and two
representative GPU cluster traces of Alibaba PAI [9] and
Microsoft Philly [11].

Contribution Summary. First, we introduce an interpretable
analysis framework to perform systematic association rule
mining and analysis for GPU-based systems – previous
research in the GPU-cluster system operation lacks this
perspective. We have performed data engineering that is
specific to datacenter operation, and designed rule pruning
techniques to hide uninteresting, redundant rules and
highlight insightful rules for system operators. Second,
we perform a detailed analysis of three real-world GPU
clusters that accelerate various types of ML workloads.
Due to the extensibility of our approach, we are able
to uncover hidden patterns in all three traces. We show
operational insights including why certain jobs underutilize
the GPU cores, the common characteristics of jobs that
have low GPU utilization, and general reasons and
characteristics of job failure. We have open-sourced our



production-grade traces at https://dcc.mit.edu/
and our interpretable analysis framework at
https://doi.org/10.5281/zenodo.10680695
for the academic community to use.

II. BACKGROUND

In this section, we briefly introduce the GPU-accelerated
HPC system traces studied in this work: PAI [9], Super-
Cloud [10], and Philly [11] traces. We list the overview of
each trace in Table I.

PAI is an Alibaba platform for ML-as-a-Service (MLaaS),
a cloud service mode similar to Platform-as-a-Service (PaaS),
but focusing on supporting ML workloads. PAI supports all
popular Deep Learning (DL) frameworks, and the workloads
cover a wide range of applications including computer vision
(CV), natural language processing (NLP), recommendation
(RecSys), reinforcement learning (RL), and graph neural net-
works (GNNs). We organize PAI trace by tasks, where one user
can submit multiple tasks of different roles simultaneously
(i.e., a parameter server task and a worker task). A distributed
training worker task will allocate multiple GPUs. For simplic-
ity and consistency with other traces, we use the term “job”
to refer to a PAI task. PAI is a heterogeneous cluster, the user
can choose from NVIDIA P100, V100, and T4 GPUs. If none
is specified, the system will assign a miscellaneous low-end
GPU type to the job.

SuperCloud is a GPU cluster studied in this paper. It is
a homogeneous cluster, each node has two Xeon Gold 6248
CPUs and two NVIDIA V100 GPUs (32GB memory). To
enable the AI workflow, SuperCloud provides a full suite of
tools including Tensorflow [19], Pytorch [20], Horovod [21]
and many other dependencies. The NVIDIA Collective Com-
munications Library (NCCL) is configured for GPUDirect
and RDMA over ethernet to support distributed training. For
each job, we collect the CPU, memory, and I/O usage from
Slurm [22] with an interval of 10 seconds. We collect the GPU
utilization (or SM utilization for Streaming Multiprocessor),
GPU memory (bandwidth) utilization, memory used (GB),
and GPU power from NVIDIA System Management Interface
(nvidia-smi) as time-series data every 100ms. The MIT
SuperCloud trace is currently open-sourced as a dataset [23]
at https://dcc.mit.edu/.

Philly is a cluster shared across groups in Microsoft. The
trace contains logs from 14 virtual clusters (VCs), on two dif-
ferent types of GPUs – one with 12GB memory and the other
with 24GB memory (the device name is unknown). Philly uses
a distributed monitoring system [24] to record measurements
of CPU utilization, GPU utilization, and server memory used
with a granularity of 1 minute. The majority of the applications
are convolutional neural networks (CNNs) and recurrent neural
networks (RNNs). Philly is a very representative trace and has
been used in various studies [25], [26], [27], [28], [29], hence
we include Philly Trace in this work.

TABLE I: Overview of studied traces in this work.

Name Operator Time Jobs Users GPUs Application

PAI [9] Alibaba 2 months 850k 1242 >6k Cloud MLaaS

SuperCloud [10] MIT 8 months 98k 310 450 AI Research

Philly [11] Microsoft 75 days 100k 319 2.5k ML Training

III. BUILDING AN INTERPRETABLE ANALYSIS
FRAMEWORK

A. Motivation

The analysis of large-scale HPC traces is generally divided
into two major categories: predictive analysis and descrip-
tive analysis. Predictive tasks aim to build classification or
regression models to predict a target feature. In this work,
we are more interested in descriptive analysis, where the
objective is to discover hidden relationships in the trace data,
generating straightforward takeaways on HPC system design
and operation.

Previous efforts in trace analysis have lacked the Inter-
pretability aspect. For example, one can train machine learning
models such as Support Vector Machines (SVM) or Artifi-
cial Neural Networks (DNN) to predict job exit status and
hardware failures [30], [31]. However, SVM uses kernels
to map original data into higher dimensional space before
performing a hyperplane linear separation, and DNNs include
multiple hidden layers of linear perceptrons and nonlinear
activations – it is difficult to interpret the relationship between
the input features and output targets. Even for decision trees
that are known to have better interpretability than other ma-
chine learning models, the analysis typically requires a feature
transformation stage to make the features abstract [32]. Thus,
the split decision cannot be directly translated into operation
insights.

Previous works have used clustering analysis to understand
the underlying nature of common behaviors of HPC system
jobs [33], [34], [35]. While dividing points closer to each other
into groups is intuitively compelling, it lacks reasoning about
the grouping, and slight differences in initialization can lead
to qualitatively different results [36]. Therefore, such analysis
cannot generate readable information with a confidence guar-
antee. Unsupervised learning methods such as autoencoder
generates an abstract-level representation of the data, such
representation does not reveal the cause and characteristics
of certain phenomenons such as resource underutilization or
contention.

In this work, we aim to characterize and provide root
cause analysis for interesting observations in large-scale GPU-
accelerated HPC systems for AI workloads. We apply asso-
ciation rule mining to discover direct relationships between
certain job properties and observations, guiding system design
and workload scheduling.

B. Association Rule Analysis

Association analysis is a popular technique used to discover
interesting relationships hidden in large data sets. It was



originally implemented for market basket transactions and
became widely used in other application domains such as
bioinformatics, web mining, and scientific data analysis [18],
[37], [38]. The objective is to generate meaningful association
rules from a data set of transactions – these can be transac-
tion records of customer purchases, and in our case, these
are scheduling and execution logs of submitted jobs in an
HPC system. The problem of association rule mining can be
formally defined as the following.

Let I = {i1, i2, ..., in} be a set of all possible items in the
transactional database, where each item in the set represents
a unique attribute of a job. For example, these items can be
“Job Failure”, “Multi-GPU”, or “Tensorflow” to indicate that
the job has failed, the job is a multi-GPU job, or the job uses
the Tensorflow framework, respectively. Any transaction can
then be represented by a collection of items from the item set
I . Let D = {t1, t2, ..., tm} be the set of all transactions in the
database, where each transaction ti contains a subset of items
in I . In our analysis specifically, each transaction corresponds
to a unique job record in the datacenter job trace.

An association rule is defined as an implication expression
of the form X ⇒ Y , where X and Y are two disjoint sets
of items (a set of items is also named itemset) that are both
subsets of I , in other words, X ⊆ I, Y ⊆ I,X ∩ Y = ∅.
The left-hand-side itemset of the rule (in this case X) is
the antecedent and the right-hand-side itemset (Y ) is the
consequent. The rule implies that when events in X occur,
events in Y are also likely to be true, an intuitive example is
{“Snow”} ⇒ {“Winter”}. To evaluate the quality of a rule,
three metrics are typically used, namely support, confidence,
and lift.

An itemset X is contained by a transaction ti if X ⊆ ti. Sup-
port of an itemset X is defined as the number of transactions
that contain X (also known as support count of X, denoted by
σ(X)) as a fraction of the total number of transactions:

supp(X) =
σ(X)

|D|
(1)

where |D| is the total number of transactions in database D.
Since the antecedent and consequent are mutually exclusive, a
transaction containing the rule of X ⇒ Y must contain all the
items in both itemsets X and Y . The support (range [0, 1]) of
a rule X ⇒ Y can be calculated by the probability of seeing
both itemsets together:

supp(X ⇒ Y ) = P (X,Y ) =
σ(X ∪ Y )

|D|
(2)

Here we use P (·) to denote probability. The support reflects
the frequency of the antecedent and consequent appearing
together in the database, but it does not address the relationship
of the data. The confidence metric (range: [0, 1]) is used to
describe how frequently the items in the consequent appear in
transactions that contain the antecedent.

conf(X ⇒ Y ) = P (Y | X) =
σ(X ∪ Y )

σ(X)
(3)
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Fig. 1: Number of frequent itemsets at different levels of
minimum support. (PAI has more entries and features than
others)

Higher confidence indicates a higher likelihood of observing
Y upon observation of X , thus the rule X ⇒ Y should
be a stronger rule. However, the metric is biased towards
consequent itemsets that are naturally frequent. For example,
a rule {“SingleGPU”} ⇒ {“JobSuccess”} has 0.8 confi-
dence, indicating single-GPU jobs are most likely to execute
successfully. But if 80% of the jobs in the trace are finished
successfully, this is a misleading rule as the two itemsets
can be independent of each other. The lift metric (range:
[0,∞]) can be calculated by normalizing the confidence of the
rule with the support of the consequent, and it is essentially
evaluating the dependency of the antecedent and consequent:

lift(X ⇒ Y ) =
conf(X ⇒ Y )

supp(Y )
=

P (X,Y )

P (X)P (Y )
(4)

The lift measures the support of a rule against the baseline
support computed under the statistical independence assump-
tion: when two itemsets X,Y are independent, P (X,Y ) =
P (X)P (Y ), the lift will be 1. A lift value greater than 1
suggests that the antecedent and consequent are dependent, a
larger lift indicates stronger dependence.

Evaluating the three metrics provides a comprehensive
understanding of the meaningfulness of a rule. For instance,
if a rule X ⇒ Y has a support of 0.1, confidence of 0.8, and
lift of 2, it means that X and Y appear together in 10% of
the transactions, Y appears in 80% of the transactions that
contains X , and we are twice more likely to see X and
Y together than we would have expected assuming the two
itemsets are independent. The objective of association analysis
in this work is to generate meaningful rules from the data using
the support, confidence, and lift measurements.

C. Itemset Generation

We take a two-step approach to generate association rules
– first, generate frequent itemsets from the database, then
generate rules from the frequent itemsets. A frequent itemset
is defined as an itemset whose support is greater than a min-
imum support threshold. Determining the minimum support
threshold requires domain knowledge about the application
case. A threshold that is too high would miss interesting rules
that appear at a lower frequency, while a threshold that is too



low would generate spurious frequent itemsets that come from
randomness, and generate too many rules that are difficult
to manage. We set the support threshold to 5% of the total
number of jobs in the trace. When there are 100k jobs (Philly
trace), a frequent itemset is contained in at least 5k jobs, which
is a decently large number of samples to avoid randomness.
In Fig. 1, we show that even for the smallest trace Philly,
we have generated more than 1.2k frequent itemsets with the
current support threshold. For PAI and SuperCloud trace, we
have generated approximately 232k and 7.5k frequent itemsets,
respectively.

We use the FP-Growth algorithm [39] which is a popular
alternative to the traditional Apriori algorithm [40] for ex-
tracting frequent itemsets. FP-Growth uses a data structure
called FP-tree to deal with performance issues (exponential
runtime and memory requirements) presented in the Apriori
algorithm when the database is large. It is the state of the
practice algorithm for frequent itemset generation [41], [42],
[43], [44].

D. Association Rule Pruning

We can generate association rules from extracted frequent
itemsets. For example, an itemset {X,Y, Z} can generate rule
{X} ⇒ {Y,Z}, {X,Y } ⇒ {Z}, {Z,X} ⇒ {Y }, etc.
To prevent the number of generated rules from getting out
of control, we apply rule filtering based on recent work on
the root cause analysis systems deployed in Meta/Facebook
datacenters [44]. First, we limit the maximum length of
frequent itemsets to 5, which prevents generating rules that are
too descriptive and specific to the samples. Then, we specify
a minimum lift threshold for rule generation. A lift threshold
ensures that the antecedent and consequent of a rule do not
have strong independence, otherwise the rule is not useful
for decision-making (III-B). We set the lift threshold to be
1.5, meaning the rules we generate are 50% more likely to
appear together than expected assuming the rule antecedent
and consequent are independent.

We also design rule pruning conditions on top of the lift-
based filtering. We are interested in cause analysis of certain
events and also the characteristics of certain observations.
For instance, we observed that a significant number of jobs
that requested GPU have zero GPU usage. In our analysis,
we are interested in finding out what kind of job submission
typically has this behavior (i.e., user group, framework), as
well as what other characteristics we can extract from this kind
of job (i.e., low memory usage, short runtime). To improve the
value of generated rules, we designed and applied four pruning
conditions to our analysis. We first introduce a concept of
keyword in our definition:

Definition 1: A keyword K is an item that we are particularly
interested in for the analysis. K ∈ I .
Recall that I is the set of all items in the database. The
keyword represents our objective of rule mining. For example,
if we want to investigate job failure, we will set the keyword
to “job failure” and only look at relevant rules that contain
the keyword. Rules that have the keyword in consequent can

be used for cause analysis. As for rules with the keyword in
the antecedent, they can be used for characteristic analysis.
For each rule containing the keyword, we check the following
conditions for pruning decision:

Condition 1: When there exist two rules Xi ⇒ Y and Xj ⇒
Y , where keyword K ∈ Y and Xi ⊂ Xj , if Clift∗lift(Xi ⇒
Y ) ≥ lift(Xj ⇒ Y ), where Clift ≥ 1, then prune rule Xj ⇒
Y . Else if Csupp ∗ supp(Xj ⇒ Y ) ≥ supp(Xi ⇒ Y ), where
Csupp ≥ 1, prune rule Xi ⇒ Y .

In this cause analysis scenario, when there exist two rules
with similar antecedents and the same consequent containing
the keyword, discard the rule with a longer antecedent if the
shorter rule has a similar or higher lift. Otherwise, discard
the shorter rule when the longer rule has a higher lift as well
as similar support. The two parameters Clift and Csupp are
extended from a previous work [44] to tune how easily the
conditions can be satisfied depending on the nature of the
dataset. Clift is used to regulate the margin of lift difference,
and Csupp is used to loosen the comparison criteria for
support since supp(Xj ⇒ Y ) ≤ supp(Xi ⇒ Y ) always
holds true when Xi ⊂ Xj (Eq. 2). Consider the following
rules R1 and R2 for the intuition of this conditional pruning
with keyword as “job failure”:

Rule R1: {user A} ⇒ {job failure}
Rule R2: {user A, job type B} ⇒ {job
failure}

If the lift of R1 is similar or higher than R2, it means any
job type the user runs tends to fail, we do not need to specify
job type B. If R2 has a higher lift and similar support as R1,
specifying job type B is more informative, and it is observed
in enough samples, so we can prune R1.

Condition 2: When there exist two rules X ⇒ Yi and
X ⇒ Yj , where keyword K ∈ X and Yi ⊂ Yj , if
Clift∗lift(X ⇒ Yj) ≥ lift(X ⇒ Yi) and Csupp∗supp(X ⇒
Yj) ≥ supp(X ⇒ Yi), where Clift ≥ 1, Csupp ≥ 1, then
prune rule X ⇒ Yi. Otherwise, if Clift ∗ lift(X ⇒ Yj) <
lift(X ⇒ Yi), prune rule X ⇒ Yj .

This condition for characteristics analysis covers the case
when two rules share an antecedent containing the keyword,
one rule is more specific (or longer) than the other rule. We
would prefer the rule with a more specific consequent if its
lift and support values are not too far from the shorter rule.
We demonstrate this condition with the following example:

R1: {job failure} ⇒ {short runtime}
R2: {job failure} ⇒ {short runtime,
cluster C}

Rule R2 reveals more characteristics about jobs that have
failed – they also run at cluster C. If these two rules have
a similar lift and support, R2 will be more valuable to the
system operator. But if R1 has a clear lift advantage over R2,



binding failed jobs to cluster C is misleading, thus we should
keep the more preservative rule.

Condition 3: When there exist two rules X ⇒ Yi and X ⇒
Yj , where keyword K ∈ Yi, K ∈ Yj and Yi ⊂ Yj , if Clift ∗
lift(X ⇒ Yi) ≥ lift(X ⇒ Yj), where Clift ≥ 1, then prune
rule X ⇒ Yj .

This condition is for cause analysis, but one rule has more
specific consequent than the other rule. Since we only care
about the cause (antecedent), we would prefer a more concise
consequent when the two rules have a similar lift. We explain
with the following example:

R1: {user A} ⇒ {job failure}
R2: {user A} ⇒ {job failure, cluster C}

Both rules suggest that jobs submitted by user A are a source
of failure. There is no need to keep rule R2 if R1 has a decent
lift since R2 does not provide new information about the cause
of failure. Similarly, we would like the characteristic analysis
to be concise as well.

Condition 4: When there exist two rules Xi ⇒ Y and Xj ⇒
Y , where keyword K ∈ Xi, K ∈ Xj and Xi ⊂ Xj , if Clift ∗
lift(Xi ⇒ Y ) ≥ lift(Xj ⇒ Y ), where Clift ≥ 1, then
prune rule Xj ⇒ Y .

When the keyword is in the antecedent, we care about other
interesting characteristics that are also present in jobs that
have observed the keyword. For two rules that have shown
the same consequent, if a shorter antecedent generalizes well,
we do not need a more specific antecedent.

R1: {job failure} ⇒ {short runtime}
R2: {job failure, cluster C} ⇒ {short
runtime}

When both rules have a similar lift, we know that jobs that
have failed also tend to have short runtime, whether they are
in cluster C or not. Therefore, we can prune rule R2.

In summary, we designed four conditional filters, that can
be applied to rules depending on: (1) whether the keyword
is in the antecedent or the consequent; and (2) whether the
difference is in the antecedent or the consequent. We have
set both Csupp and Clift to be 1.5 for all three traces as we
see that these filters have significantly reduced the number
of redundant rules while still maintaining the key information
(Sec. IV).

E. Trace Preprocessing

Applying association rule analysis to an original HPC
system trace is infeasible due to several reasons. Firstly, the
data is collected at different levels, thus different features of a
job are scattered across different files. For example, in our
SuperCloud trace collection, job information such as user,
runtime, and exit status is collected at the scheduler level,
while measurements such as CPU and GPU utilization are

collected at the node level. The PAI trace and Philly trace
are also organized similarly. Our first effort was to merge all
the features into a single file since rule generation requires all
transaction features to be available in the mining database.

Secondly, each database transaction should be organized
as a set of nominal or interval attributes. In our analysis,
since each transaction corresponds to a unique job, some
attributes such as the job’s GPU streaming multiprocessor
(SM) utilization and execution time are continuous in nature.
For such features, we perform equal frequency binning [45]
which assigns the value into one of the multiple bins, each
bin having roughly the same number of data points. Choosing
the number of bins for discretization comes with trade-offs. If
the bin size is too small, the generated rules would have low
support. If the bin size is too large, the rules would have low
confidence and lift. We find the bin size of a quarter works
well, thus each value is represented by one of the following
bins:

• Bin1: [min, 25th percentile)
• Bin2: [25th percentile, median)
• Bin3: [median, 75th percentile)
• Bin4: [75th percentile, max]

We also tried equal-width binning, where we divide the full
range of the feature into bins of equal intervals. This method
does not work well because some features such as runtime
have long tails, thus bins at higher values tend to be empty.
After the binning, the database gets transformed using one-hot
encoding into the FP-Growth algorithm’s supported format.

Thirdly, the distribution of attribute values can be highly
skewed, which generates uninteresting frequent itemsets. For
example, if 90% of jobs have requested a single GPU while
10% of jobs have requested multiple GPUs, most frequent
itemsets would include the item “single GPU”, and generate
rules that suggest most items are associated with “single GPU”
– these rules do not reveal much insight. Instead, we should
drop these items and only keep “multi-GPU” items in the
database. In our preprocessing, we drop the items that are
present in more than 80% of the jobs in the trace.

Finally, a categorical attribute can have many possible
values, and some of these values may have very low support.
To handle this issue, we aggregate the low-support attribute
values into groups. For example, the PAI trace has the neural
network model of the workload as a feature, and we aggregate
the items “resnet”, “vgg”, and “inception” into a new item
called “CV”, items “bert”, “nmt”, and “xlnet” into an item
called “NLP”. The job user is also one of such categorical
features since a lot of users only submit a few jobs. We have
sorted the users by the number of job submissions in the trace
and grouped the most active users responsible for 25% of the
jobs in the trace as “frequent user”, and the least active users
responsible for 25% of the jobs in the trace as “new user”.

Next, we demonstrate the analysis results of the PAI,
SuperCloud, and Philly traces.
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Fig. 2: Box plot of confidence and lift of rules across traces.
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Fig. 3: Rules visualized by their support, confidence, and lift
values in PAI trace. The number of rules has been greatly
reduced after rule pruning.

IV. APPLICATION OF THE FRAMEWORK: CASE STUDIES

A. Overview

We apply our methodology for trace analysis to three dif-
ferent traces described earlier (Sec. II) and discuss interesting
observations. For each observation and analysis, we set the
keyword to the item that represents this observation, perform
association rule mining as described in Sec. III, and examine
the rules that have the keyword in the consequent (cause
analysis) and rules that have the keyword in the antecedent
(characteristic analysis).

Why is the analysis presented for different sys-
tems/traces individually? We have noticed an inherent dif-
ference between the traces – shown in Fig. 2, an example
study of GPU underutilization rules. In this figure, the con-
fidence and lift values of extracted rules are highly varied
across traces. Consequently, it is not appropriate to compare
similar rules from different traces quantitatively and present
analysis together. Nevertheless, this highlights how a portable
methodology like ours is more useful to find “system-specific”
insights instead of finding “generic” insights.

Pruning the extracted rules is a key step when analyzing the
traces, especially for the PAI trace. Due to its high number of
jobs and features, we are able to extract tens of thousands
of rules from it. As shown in Fig. 3, when studying GPU
underutilization rules, we visualize each extracted rule as a
point based on the rule’s support and lift. After applying the
rule pruning mechanisms (Sec. III-D), we have substantially
reduced the number of rules, especially the ones with lower

SuperCloud Trace Philly TracePAI Trace

Fig. 4: GPU SMs are often not utilized by a significant number
of jobs.

TABLE II: GPU underutilization rules from PAI trace.

Antecedent Consequent Supp. Conf. Lift

C1 GPU Request = Bin1 SM Util = 0% 0.13 0.94 1.88
C2 Memory Used = Bin1 SM Util = 0% 0.23 0.92 1.85

C3 Freq Group,
GPU Type = None SM Util = 0% 0.13 0.82 1.65

C4 CPU Util = Bin1,
Runtime = Bin1 SM Util = 0% 0.05 0.77 1.54

C5 CPU Request = Std Freq User,
SM Util = 0% 0.11 0.61 2.73

A1 Freq User,
SM Util = 0%

Mem Request = Std,
GPU Type = None,
Tensorflow

0.21 0.96 1.94

A2 CPU Request = Std,
SM Util = 0%

Freq User,
GPU Type = None,
Tensorflow

0.11 0.78 2.96

A3 GPU Request = Bin1,
SM Util = 0%

Freq User,
CPU Request = Std,
Mem Request = Std

0.07 0.61 4.07

lift values, making the results readable and manageable by
humans to assist with decision-making.

In the following results, we perform rule analysis centered
around the two most common concerns in the traces: jobs
that underutilize GPU cores and jobs that failed. Besides the
common ones, we also analyze topics specific to the trace and
share some insights.

B. Low GPU-Utilization Jobs

In the PAI and Philly trace, we found that a significant
number of jobs have an average GPU SM utilization of near
zero. In our SuperCloud trace, we have also observed this
behavior in some jobs. We show the cumulative distribution
function (CDF) of the GPU SM utilization of all jobs in
Fig. 4: there are 46%, 10% and 35% of jobs that barely use
the GPU processor in the PAI, SuperCloud and Philly trace,
respectively. Note that all jobs in the trace have requested
at least one GPU. Thus, this is an alarming observation as
increasing hardware utilization is a key objective of HPC
system operation [46], [47].

PAI Trace. Table II shows some association rules related
to the jobs that show 0% GPU SM utilization in the PAI
trace. We first take a methodological detour of how the data is
organized. Note that we use bin numbers to indicate the range
of non-categorical attributes, such as the number of GPUs
requested and memory utilization. However, for the number
of CPU cores requested, we find that approximately 50% of



the jobs have requested 600 cores, which is also the median
of all jobs. We infer that this could be the default or standard
CPU request count, thus we create a bin “Std” to represent
this interval (standard request count). This is also true for
the amount of memory requested, so we create a bin for the
standard memory request as well. The rules are labeled with
“C” if the keyword is in the consequent, and “A” if the keyword
is in the antecedent.

The rules C1 to C5 show several signs of potential 0%
GPU core utilization. C1 and C2 show that a low GPU request
number and a low memory usage are good indicators of no
GPU core usage. The frequent group attribute in C3 states
that a job from a frequent job group that does not specifically
request GPU type is likely to not use the GPU. The job
group is specific to the PAI trace, where jobs are assigned a
group label depending on several parameters including library
invocations, input arguments, data sources, and sinks. For
example, when different users perform BERT pre-training
using a provided WikiText dataset, their jobs may belong to the
same group. We classify the most frequently used job groups
that correspond to 25% of job submissions as the frequent
group. C4 suggests that when a job has both low CPU usage
and short runtime, its GPUs tend to be idle. This rule reveals
one possible reason for GPU being underused: the user is
trying to test something out quickly in debug mode, then kills
the job. C5 does not have very high confidence, but its high
lift value suggests that when a job has the standard CPU core
request, it is much more likely to come from a frequent user
and have 0% SM utilization.

Likewise, we can interpret the rules A1 to A3 for charac-
teristic analysis. The common characteristics of a job that has
requested but not used GPU include frequent user, unspec-
ified GPU type at request, and Tensorflow framework. It is
interesting knowing that these jobs often use the Tensorflow
framework since GPU underutilization should be framework
agnostic. This implies that Tensorflow is used as a template
framework, thus users are more likely to use it to explore the
functionalities of the MLaaS platform. A key characteristic
of these low GPU usage jobs is low request customization
by the user – they submit the job request with standard CPU
and memory request, unspecified GPU type, and the template
framework. These rules all have one more item besides the
keyword in the antecedent, this is because we did not find
strong rules that are applicable to all 0% GPU utilization jobs.
We have to know at least one more attribute of the job to
implicate its other characteristics.

Takeaways: The PAI cluster shows associations between
certain job request patterns and GPU underutilization, a
prediction model can be used to identify jobs that tend
to underutilize GPU cores at the job submission stage
before it gets scheduled.

SuperCloud Trace. Table III lists the rules extracted from
SuperCloud trace. In the cause analysis rules C1 to C4, the
low CPU utilization and short runtime are good indicators of

TABLE III: GPU underutilization rules from SuperCloud
trace.

Antecedent Consequent Supp. Conf. Lift

C1 GMem Util = Bin1,
GMem Util Var = Bin1 SM Util = 0% 0.11 0.94 6.28

C2
CPU Util = Bin1,
GMem Used = Bin1,
GPU Power = Bin1

SM Util = 0% 0.06 0.81 5.37

C3 GPU Power = Bin1,
New User

SM Util = 0%,
GMem Util = Bin1 0.05 0.60 3.99

C4 GPU Power = Bin1,
Runtime = Bin1

SM Util = 0%,
GMem Util = Bin1 0.05 0.60 3.99

A1 SM Util = 0%,
SM Util Var = Bin1

GMem Util = Bin1,
GMem Util Var = Bin1,
GMem Used = Bin1

0.08 1.00 10.59

A2 SM Util = 0% GMem Util = Bin1,
GPU Power = Bin1 0.13 0.88 4.30

TABLE IV: GPU underutilization rules from Philly trace.

Antecedent Consequent Supp. Conf. Lift

C1 Min SM Util = 0%,
Runtime = Bin1 SM Util = 0% 0.09 0.87 2.74

C2 CPU Util = Bin1 SM Util = 0% 0.13 0.60 1.87

A1 SM Util = 0%,
GPU 24GB Mem

Min SM Util = 0%,
CPU Util = Bin1 0.08 0.69 3.85

GPU underutilization, which is seen in Table II as well. In
addition, in our trace collection, we capture the GPU power
consumption and GPU memory utilization (this is memory
bandwidth, not memory used) that are not present in the other
two traces. We find that low power consumption and low GPU
memory utilization are also good indicators for no usage of
GPU SM. Rule C3 shows that new users are associated with
low GPU SM and memory utilization, while the rules in the
PAI trace do not show any association with new users.

Recall that in SuperCloud trace we capture the GPU metrics
at an interval of 100ms, we also generated the variation of
each metric (Sec. II). The rules A1 and A2 in Table III have
different antecedents: A1 is the characteristics for jobs that
have the SM utilization constantly low all the time, while A2
includes jobs whose average SM utilization is near 0%, but
the GPU may have been used in short intervals throughout its
job lifetime. The characteristics of low GPU memory usage
are not present in rule A2, meaning a job could keep a GPU
memory occupied but does not use the compute cores. This is
common for model inference when the user sends inference
requests occasionally.

Philly Trace. Table IV show the rules we discover in Philly
trace. Since SM utilization is collected as a 1-minute average
time series, we also use the minimum and maximum SM
utilization within the job period as features in addition to
average SM utilization. Rule C1 shows that if the job has 0%
SM utilization within any 1-minute time span, and has short
runtime, the overall SM utilization is likely to be 0%. Similar
to the other traces, low CPU utilization and short runtime
appear in the antecedent. Rule A1 is specific to jobs scheduled
at nodes with 24GB memory GPUs.
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Fig. 5: Job exit status in the traces.

Takeaways: We suggest building a lower-tier system
for allocation of debugging and exploratory jobs using
cheaper and lower-performance GPUs, so that the higher-
performance GPUs such as NVIDIA A100 and H100 are
dedicated to more demanding jobs. This analysis also
provides evidence to support the integration of GPU-
sharing tools such as NVIDIA Multi-Process Service and
Multi-Instance GPU.

In summary, we have shown that our analysis methodology
can be applied to study GPU underutilization behavior in all
three traces. Low CPU utilization and short runtime appear in
all three trace cause analyses, which reveals the information
that these jobs are likely spawned as debug runs – the run may
work out quickly and the user terminates the job, or the run
may require more modification to the code, so the CPU would
also have low utilization. The PAI and SuperCloud trace also
have other good indicators of GPU underutilization, such as
resource request, job group, and GPU memory usage.

C. Failed GPU Jobs

Job failure is also an important monitoring metric for HPC
system operation. We have observed that a significant number
of jobs have failed or terminated unexpectedly in the three
systems in Fig. 5. In SuperCloud and Philly trace, the killed
label is for jobs that are manually terminated by the user, and
the failed label is for unexpected failure. PAI trace has the
highest job failure rate, but in its successfully terminated jobs,
there is no label for user-killed jobs. In all three traces, the
failed job accounts for a considerable portion (> 13%), and
this motivated us to study the association rules related to these
failed jobs.

PAI Trace. In Table V, we show several strong rules related
to job failure. First, we do rule mining for cause analysis (C1-
C6) and then, characteristics analysis (A1-A2) – in both cases,
we discuss how system operators can infer easier rules for
better or proactive operations.

In the cause analysis (rule C1 to C6), we observe that job
failures can be predicted by job information at submission,
i.e., request CPU/GPU resources, user id, and job group. C1
reveals that when a user requests fewer CPU cores than one
usually would for a frequent group job, the job is most likely
to fail. In C2, the used GPU memory is still 0GB when
the job fails, meaning the failure happens before the model
and parameters get loaded into the GPU. This is possibly

TABLE V: Job failure rules from PAI trace.

Antecedent Consequent Supp. Conf. Lift

C1 CPU Request = Bin1,
Freq Group

GPU Type = None,
Failed 0.11 0.95 4.41

C2
Mem Used = Bin1,
GMem Used = 0GB,
Freq Group

SM Util = 0%,
Failed 0.08 0.95 4.32

C3 Freq User,
Freq Group Failed 0.10 0.91 3.46

C4 GMem Used = 0GB,
GPU Request = Bin2 Failed 0.08 0.91 3.47

C5 SM Util = 0%,
GPU Request = Bin2 Failed 0.1 0.71 2.69

C6 Memory Used = Bin1 Failed 0.17 0.67 2.54

A1 Freq Group,
Failed

CPU Request = Bin1,
Mem Used = Bin1,
Mem Request = Std

0.10 0.81 7.32

A2 Failed

GPU Type = None,
Tensorflow,
Mem Request = Std,
SM util = 0%

0.17 0.63 1.93

due to a library import error. Surprisingly, in rule C3, when
a frequent user submits a job belonging to a common job
group, 91% of the jobs have failed. This is primarily due to
one user submitting a large number of jobs in the PAI trace.
This information is helpful for root cause identification, as
system operators can focus on the high failure rate of users
and provide corresponding support.

In Table V, both C4 and C5 show similar symptoms: a
user requests a decent number of GPUs (25 ≤ number of
GPUs < 100 in PAI trace), but does not properly use the
GPU cores and memory. Deep learning job schedulers in
HPC systems would typically optimize for distributed jobs that
request a high number of GPUs because these jobs require
gang-scheduling [9], [11], [12]. The system operator should
suggest that the users test their jobs with less number of GPUs
before deploying at a large scale. C6 is a straightforward rule
as 67% of jobs that have low memory usage have also failed.

From the characteristic analysis rules A1 and A2 in Table V,
we see that failed jobs share some similar properties with the
GPU underutilization jobs (Table II) in PAI trace: standard
memory request, unspecified GPU type, and Tensorflow frame-
work. In A2, 0% GPU SM utilization is even in the consequent
of a job failure rule, meaning failed jobs are likely to have
GPU underutilization.

Takeaways: For PAI trace, our methodology helps us
discover multiple simple rules to understand the charac-
teristics of failed jobs. The presence of multiple strong
rules indicates that a simple rule-based or tree-based
classifier will suffice for prediction of job failures.

SuperCloud Trace. For the SuperCloud trace, we find
a limited number of rules in Table VI. Although the GPU
memory and CPU utilization cannot be used as good predictors
of job failure due to low confidence, the lift value shows
that jobs with low GPU memory and CPU utilization are
nearly twice more likely to fail. When the keyword is in
the antecedent, A1 strengthens the association between failure
and GPU memory utilization. A2 shows that about 40%



TABLE VI: Job failure rules from SuperCloud trace.

Antecedent Consequent Supp. Conf. Lift

C1 GMem Util = Bin1 Failed 0.06 0.25 1.93
C2 CPU Util = Bin1 Failed 0.06 0.25 1.90

A1 GPU Power = Bin1,
Failed GMem Util = Bin1 0.05 0.91 3.64

A2 Failed Runtime = Bin4 0.05 0.41 1.66

TABLE VII: Job failure rules from Philly trace.

Antecedent Consequent Supp. Conf. Lift

C1 Multi-GPU Failed 0.05 0.40 2.55
C2 New User Failed 0.08 0.38 2.46

A1 Min SM Util = 0%,
Failed Num Attempts > 1 0.06 0.56 3.79

A2 Min SM Util = 0%,
Failed Runtime = Bin4 0.05 0.55 2.20

of failed jobs have relatively long runtime (from 8 hours
to a few weeks) in the SuperCloud cluster. Since machine
learning workloads have static execution between mini-batch
iterations [48], these workloads are unlikely to execute for 8
hours and fail in one particular epoch. Therefore, these errors
are likely caused by node failures or exceeding allocated time
limits.

Philly Trace. For Philly trace, the results in Table VII show
that multi-GPU jobs and jobs submitted by new users are
approximately 2.5 times more likely to fail compared to the
general failure rate. We expect multi-GPU jobs to fail more
often because, in distributed training, the failure of one worker
would cause the whole job to fail [19]. We do not observe this
association in the PAI trace because more than 99% of the jobs
are multi-GPU jobs. The association is also not mined in our
SuperCloud trace because 97% of the jobs are single-GPU
jobs, hence multi-GPU jobs do not have enough support. As
a comparison, 14% of jobs in Philly trace use multiple GPUs.
Rule C2 has shown opposite observations to the PAI trace.
In Philly trace, new users are more likely to submit failed
jobs, whereas in PAI trace it is frequent users. We recognize
that even though both PAI and Philly traces are collected on
production datacenters for machine learning, they still have
significant differences in perspectives including (1) Philly is
collected 3 years before PAI; (2) Philly cluster is only for
training, PAI is an MLaaS cloud platform for both training
and inference; (3) Philly workloads are CNNs and RNNs,
while PAI includes not only these workloads but also NLP, RL,
and GNNs. Nevertheless, the common observation is that the
failures are associated with users instead of nodes or clusters.
This also aligns well with an internal study from Microsoft:
user/programming errors lead to a lot of failures [11].

Takeaways: To accurately predict failure for systems
like SuperCloud and Philly, more complex models such
as neural networks will be needed. For highly distributed
jobs, the system can set up a small number of nodes

TABLE VIII: Interesting trace-specific rules.

Antecedent Consequent Supp. Conf. Lift

PAI1 GPU Type = T4 Queue = Bin1 0.18 0.85 3.70
PAI2 GPU Type = None T4 Queue = Bin4 0.06 0.52 1.82

PAI3 Model = RecSys GPU Type = T4,
Multiple Tasks 0.29 0.88 2.98

PAI4 CPU Util = Bin0,
SM Util = Bin4 Model = NLP 0.07 0.99 1.71

CIR1 New User Job Killed 0.05 0.26 1.75

PHI1 Multi-GPU Runtime = Bin4 0.07 0.50 2.01

dedicated to screening before sending the actual GPU
request number to the scheduler for gang scheduling.

The rule A1 in Table VII is specific to the Philly trace,
as the Philly cluster automatically attempts to restart the job
when there is an error. The rule also shows that failed jobs do
not always get another attempt. The rule A2 shows a similar
observation as the SuperCloud trace – a significant number of
failed jobs have exceptionally long runtime, and not all job
failures occur soon after launch.

In summary, we are able to extract some high-confidence
rules from the PAI trace to forecast a failure using job submis-
sion information. We find that associations exist between job
failures and GPU underutilization, addressing one issue will
alleviate another. For SuperCloud and Philly, the rules are not
high confidence, but they show insights about relationships
between certain job attributes to failure. Some failed jobs run
longer than most jobs before the error occurs, which requires
more attention as more compute cycles get wasted compared
to jobs that fail early.

D. Misc. Interesting Rules

In addition to common concerns about GPU underutilization
and job failure, we also list a few other interesting rules with
attributes unique to the trace in Table VIII.

In PAI system, the user can choose to specify a GPU type
from the power-efficient NVIDIA T4, or the performant P100
and V100 GPUs. Due to their low support, we label P100 and
V100 as non-T4 GPUs. The rules PAI1 and PAI2 in Table VIII
show that the queue wait times of T4 and non-T4 GPUs are
opposite. This is interesting because the ratio of T4 to none-
T4 GPUs in PAI is 1:3.5. These rules provide insights on how
to balance between GPU types when building a heterogeneous
cluster.

The PAI trace has provided the ML model types as labels
for some jobs. We have filtered out the jobs whose model
type label is NaN and applied the analysis on the processed
dataset to discover workload-related rules. We have found
rules PAI3 and PAI4 that are specific to certain deep learning
models in Table VIII. From these rules, we can infer that
(1) recommender system models tend to use the T4 GPU
which is designed for inference, and each job spawns multiple
recommender tasks in parallel; (2) when a job has relatively
low CPU compute demand but high GPU core utilization, it is
most likely a language model job. System designers can inte-



grate such model-specific information to further optimize the
MLaaS infrastructure, for example, assigning recommender
jobs to efficient T4 GPUs and NLP jobs to high-performance
V100 GPUs.

A significant number of jobs are killed by the user in
SuperCloud and Philly systems (Fig. 5). In Table VIII, rule
CIR1 implicates that in the SuperCloud system, new users are
75% more likely to kill their jobs. This behavior is different
from new users in Philly system, who tend to have job failures
instead of manual terminations. Another interesting rule about
multi-GPU jobs in Philly is that they tend to run for a very
long time (rule PHI1). A job scheduler should consider the
potential long execution time of multi-GPU jobs, especially
for policies like shortest-jobs-first.

V. DISCUSSIONS

Simplicity in framework configuration. Utilizing our
association rule framework circumvents the necessity for
extensive parameter tuning inherent in model-based machine
learning methodologies. Distinctively, users are required
to determine only the suitable parameters for support and
lift, which function more as filters rather than complex
hyperparameters demanding meticulous adjustments. Unlike
the intricate interactions observed with parameters such
as SGD (Stochastic Gradient Descent) learning rates, the
adjustment of support and lift parameters is straightforward:
to reduce the abundance of rules, one simply increases
the thresholds, and conversely, to augment the rule count,
decreases them. This procedural simplicity contrasts sharply
with the tuning of ML model training hyperparameters
like learning rates. Further emphasizing the framework’s
ease of use, our empirical studies across three distinct
datacenter traces consistently applied identical support and
lift thresholds, demonstrating the framework’s adaptability
and user-friendly nature.

Insights and findings from case studies. The implementation
of our association rule mining framework has unveiled novel
insights into data center operations, challenging and extending
previous understandings. For instance, contrary to the absence
of correlation in earlier studies [9], our analysis identifies a
significant link between the request for a minimal number
of GPUs and GPU underutilization (refer to Table II). Addi-
tionally, against conventional expectations that frequent users
would have a lower incidence of job failures due to more
stable and mature job submissions, our findings indicate a
pronounced association between high-frequency user groups
and increased job failures (see Table V). Furthermore, our
framework is capable of deducing the application domain from
patterns of CPU-GPU utilization, such as identifying NLP
applications (as demonstrated in Table VIII). Such connections
were not made in the original analysis of the PAI trace [9].

Beyond uncovering unexpected and insightful correlations,
our framework significantly contributes to the field by pro-
viding quantitative evidence for each association. While do-
main experts might intuitively recognize certain patterns based

on experience, the relative significance of these association
rules has remained elusive. Our framework fills this gap by
facilitating a comparative analysis of the strength of various
rules. Moreover, it democratizes the process of insight gen-
eration, enabling individuals, regardless of their prior domain
knowledge, to rapidly derive meaningful conclusions. Impor-
tantly, our approach lays the groundwork for a comprehensive
analysis framework, generating all high-quality rules in a
single execution. This simplifies the initial analysis and also,
establishes a foundation for more detailed exploration tailored
to specific interests or perspectives.

VI. RELATED WORK

Association rules. Besides its original application area
of market basket analysis [49], association rule mining has
been widely adopted in big data analysis including studying
COVID-19 [50], [38], [51], [52], [53], communication network
management [54], [55], [56], and web mining [37], [57], [58].
However, even though a large amount of operational data is
generated every day in HPC systems, there are only limited
works that have performed rule analysis, and they only focus
on certain server events [44], [59]. Our work is the first one to
demonstrate rule mining’s applicability to general HPC system
analysis using real job traces from GPU-accelerated clusters.

Recent advances in association rule mining are focusing on
privacy preservation [60], [61], [62], [63], analyzing streaming
data [64], [65], [66], [67], and distributed mining in cloud
computing [68], [69], [70], [71]. Our analysis of the job traces
does not have constraints such as privacy or time window, but
if needed, since our pruning techniques are applied after the
rules are generated, we can integrate the other works into the
workflow.

HPC trace analysis. The PAI [9] and Philly [11] work have
conducted a comprehensive study on their traces, but none
of the rules discovered in our work are present in the original
paper. The Helios trace [12] is also a DL job trace from a GPU-
accelerated system, but due to its lack of GPU measurement
information in the public repository, we do not include Helios
in this study.

For general systems, regardless of hardware acceleration,
a number of prior works have performed characterizations
on supercomputer operation [72], [73], [74], [75], [76], [33],
cloud orchestration [77], [13], [14], [78], [15], [16], user
behavior [73], [79], [80], and system failure [30], [81], [31],
[82]. These analysis methodologies are either experiential (i.e.,
they are based on past operational experience, and only focus
on particular features of the data, which cannot be extended to
other traces) or uninterpretable. As a comparison, our analysis
is systematically done across different clusters and can be
directly interpreted by system operators.

VII. CONCLUSION

This work addresses the interpretability issue in data analy-
sis by introducing and designing a workflow of association
rule analysis. We evaluate our analysis workflow on three
GPU-accelerated production traces of ML workloads and show



that the proposed methodology can extract useful information
about system operations to mitigate issues such as GPU
underutilization and job failure. Our insights are summarized
in rule tables, and our analysis framework has been open-
sourced along with the SuperCloud trace we collected.
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