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Reducing Carbon Emission Is of Critical Importance

CO2 in the
atmosphere
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Source: climate.nasa.gov
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World is on brink of catastrophic
warming, U.N. climate change report says

A dangerous climate threshold is near, but ‘it does not mean we are doomed’ if swift action is taken, scientists say

Average temperature anomaly, Global

Global average land-sea temperature anomaly relative to the 1961-1990 average temperature.
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Machine Learning Inference Accounts for Significant
Compute Cycles in Today’s Datacenters

Google

Inference represents

60% of their Al
infrastructure emissions

David Patterson et. al.,
Computer’22

O Meta < nvibia.

Expanded infrastructure Inference is the big

capacity by 2.5x to meet market, with an

ML inference demand estimated 80 to 90% of
cost of ML

Carole-Jean Wu et al,,
MLSys’22 Jensen Huang, GTC



The Gap between ML Inference and Sustainability
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ABSTRACT
This paper explores the environmental impact of the super-linear growth trends for Al from a holistic perspective,
spanning Data, Algorithms, and System Hardware. We characterize the carbon footprint of Al computing by
examining the model development cycle across industry-scale machine learning use cases and, at the same time,
considering the life cycle of system hardware. Taking a step further, we capture the operational and manufacturing
carbon footprint of Al computing and present an end-to-end analysis for what and how hardware-software design
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No carbon-
aware ML
inference
solution
yet!
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Opportunity |I: Mixed Quality Models

The same model architecture can have a family of model variants with
different number of parameters and sizes, yielding different accuracy levels.

Image Classification

EfficientNet-B7
AmoebaNet-C
AmoebaNet-A _ - ====" -
L
o7 NASNet-A ..-*" SENet
o5 et
et
‘‘‘‘‘ ResNeXt-101
. Inception-ResNet-v2
ot
P
¢~ Xception
,' eResNet-152
o
Bb -DenseNet-201
-
4 ' . [
'S ResNet-50
I ."
" Inception-v2
NASNet-A
[ ]
ResNet-34 . . ‘ . , .
0 20 40 60 80 100 120 140 160 180

Number of Parameters (Millions)

Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." In Intemational conference on machine learmning, pp. 6105-61 4. PMLR, 2019.
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Opportunity |I: Mixed Quality Models

Using mixture of model variants saves carbon without significantly
Impacting accuracy
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Opportunity Il: GPU Partitioning

When GPU is underutilized, it can be partitioned into multiple
individual GPU slices

MIG
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Li, Baolin et. al. "MISO: exploiting multi-instance GPU capability on multi-tenant GPU clusters." In Proceedings of the |3th Symposium on Cloud Computing, pp. 173-189. 2022.



Opportunity Il: GPU Partitioning

More efficient usage of GPU by l‘l’)lodecll \gl';iants and MIG-
partitioning also saves carbon per request a3€ partitioning
complements each other
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Opportunity lll: Carbon Intensity Variation

Configuring model variants and GPU partition allows us to reduce carbon
emission, but this needs to exploited carefully in conjunction with the carbon
intensity of the energy source
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Carbon-Aware Machine Learning Inference

How much effort we put into saving energy should depend on
current carbon intensity
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Low carbon intensity: High carbon intensity:
aim for quality! aim for reducing carbon

footprint!

How to build a carbon-aware system for ML inferences!?



Clover Objectives and Key ldeas

—

—7| Performance

——
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Save Carbon

Give the current carbon intensity, adjust the mixture of model variants and
MIG partition to optimize the combined objective of accuracy & carbon



Clover System Overview
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Optimizing the dual objective of accuracy
and carbon

GPU Partition  Model variant Energy per request Carbon intensity
Accuracy \ / \
\ p ) .
A(xP, x?) - A Chase — E(xP, x?) - ci
AAccuracy = ( A ) = Abase X 100% ACarbon = 5 X 100%
base base
™~ Highest accuracy possible ™~ Base carbon

Combined objective function | f(x?, x%) = A - ACarbon + (1 - A) - AAccuracy
using a coefficient
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Carbon-Aware Formulation

Why does this optimization problem formulation make
Clover carbon-aware?
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Optimality between two configurations depends on the
carbon intensity



How to optimize the Clover objective!?
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O~ - Model the configurations as a bipartite graph
’®‘ and apply neighbor search based on graph
¥ similarity
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Why model the configurations as graphs?

function values

* MIG provides performance isolation — only the slice type
matters

*  Which GPU the variant is hosted or the order of variants in a
GPU changes the xP, X" representation, but they would
eventually result in the same graph representation

-\~ Removal of configurations that yield the same objective
@
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Why model the configurations as graphs?
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-~ Can scale to arbitrary system size without adding

vertices/edges to the graph
The graph size only depends on number of model variant and

—

GPU slice types

The graph configurations are additive — when adding more
GPUs to the system, we simply add the edge weights of the
new GPUs to current graph. But in xP, x¥ representation, we

need to increase the dimensionality.
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Clover Optimization Workflow |

Convert model variant and GPU
partition to configuration graph
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Convert model variant and GPU Measure
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Clover Optimization Workflow Il

Measure similarity via distance
between conflguratlon graphs
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Clover Optimization Workflow lli

Perform combinatorial optimization
in graph-represented search space

Optimization Apply neighborhood search

algorithm to optimize in graph
[ g space.

@ Clover uses Simulated
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Experimental Methodology
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Clover significantly reduces carbon emission

with negligible accuracy degradation

[ Detection [ Language [EEH Classification [ Overall
8 Accuracy - Carbon
2%6 *Better %glgg:TBeﬁer %CZD(I)E:
Saves carbon emission by 80% - L 890
. . S <4 - < =R
while operating under SLA latency £+ T8 40 = 0.4
o E2 gE — o
Q O = o 20+ »n 00.2
<& < & Z
0- O 0- ~0.0

O CO,0PT A BLOVER CLOVER ¢ ORACLE s GOAL

Detection Language Classification
Clover outperforms competing = o[ 5] [T  S——— | EP T—— 5
schemes and is always closest to  55-2{ ¢ - {A O
ORACLE 554k A B ! 8 -
s =i T—> Better O I b | O

65 70 75 80 80 85 90 75 80 85
Carbon Save (%) Carbon Save (%) Carbon Save (%)



Clover’s effectiveness comes from its superior

optimization process
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Clover is adaptive and robust

User can control the trade-off
between accuracy and carbon,
and even enforcing accuracy limit

Clover is effective across
geographical regions and seasons
with varying carbon intensity
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Clover reduces the number of GPUs needed to

meet service target (embodied carbon savings)
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Clover’s co-location and mixed-quality serving enable
reductions in number of GPUs

This is essentially reducing the carbon emission needed
to produce these devices (embodied carbon)



Clover Summary of Key Contributions

Clover is the first carbon-aware machine leaming inference
system.

Clover actively configures the model variant mixture and
GPU partition to adapt to the varying carbon intensity levels.

Clover uses a novel graph-space optimization method to
significant reducing carbon emission while maintaining high Contact
service qualrty. Baolin Li

li.baocl@northeastern.edu



