

Clover: Toward Sustainable Al with Carbon-Aware Machine Learning Inference Service

<u>Baolin Li, Siddharth Samsi,</u> Vijay Gadepally, Devesh Tiwari

Reducing Carbon Emission Is of Critical Importance

The Washington Post

Democracy Dies in Darkness

CLIMATE Environment Weather Climate Solutions Climate Lab Green Living Business of Climate

World is on brink of catastrophic warming, U.N. climate change report says

A dangerous climate threshold is near, but 'it does not mean we are doomed' if swift action is taken, scientists say

Note: The gray lines represent the upper and lower bounds of the 95% confidence intervals.

Machine Learning Inference Accounts for Significant Compute Cycles in Today's Datacenters

Inference represents 60% of their AI infrastructure emissions

David Patterson et. al., Computer'22 Expanded infrastructure capacity by 2.5x to meet ML inference demand

Meta

Carole-Jean Wu et al., MLSys'22 Inference is the big market, with an estimated 80 to 90% of cost of ML

Jensen Huang, GTC

The Gap between ML Inference and Sustainability

Totally Green: Evaluating and Designing Servers for Lifecycle Environmental Impact

Jichuan Chang Justin Meza Parthasarathy Ranganathan Amip Shah Rocky Shih Cullen Bash Hewlett Packard Laboratories, Palo Alto, USA {jichuan.chang,justin.meza,partha.ranganathan,amip.shah,rocky.shih,cullen.bash}@hp.com

ASPLOS'12

Chasing Carbon: The Elusive Environmental Footprint of Computing

Udit Gupta^{1,2}, Young Geun Kim³, Sylvia Lee², Jordan Tse², Hsien-Hsin S. Lee², Gu-Yeon Wei¹, David Brooks¹, Carole-Jean Wu²

¹Harvard University, ²Facebook Inc., ³Arizona State University

ugupta@g.harvard.edu carolejeanwu@fb.com

HPCA'21

Carbon Explorer: A Holistic Framework for Designing Carbon Aware Datacenters

Bilge Acun	Benjan	in Lee	Fiodar Kazhamiaka
acun@meta.com	leebcc@seas	s.upenn.edu	fiodar@stanford.edu
Meta	University of Per	insylvania, Meta	Stanford University
USA	US	A	USA
Kiwan Maeng	Udit C	Gupta	Manoj Chakkaravarthy
kwmaeng@meta.com	uditg@m	eta.com	mchakkar@meta.com
Meta	Harvard Univ	versity, Meta	Meta
USA	US	A	USA
David Brooks		Carole-Je	an Wu
dbrooks@eecs.harvard.edu		carolejeanwu	@meta.com
Harvard	University, Meta	Met	ta
	USA	USA	A
	ASPLC	JS'22	

SUSTAINABLE AI: ENVIRONMENTAL IMPLICATIONS, CHALLENGES AND OPPORTUNITIES

Carole-Jean Wu¹ Ramya Raghavendra¹ Udit Gupta¹² Bilge Acun¹ Newsha Ardalani¹ Kiwan Maeng¹ Gloria Chang¹ Fiona Aga Behram¹ James Huang¹ Charles Bai¹ Michael Gschwind¹ Anurag Gupta¹ Myle Ott¹ Anastasia Melnikov¹ Salvatore Candido¹ David Brooks¹² Geeta Chauhan¹ Benjamin Lee¹³ Hsien-Hsin S. Lee¹ Bugra Akyildiz¹ Max Balandat¹ Joe Spisak¹ Ravi Jain¹ Mike Rabbat¹ Kim Hazelwood¹

ABSTRACT

This paper explores the environmental impact of the super-linear growth trends for AI from a holistic perspective, spanning *Data*, *Algorithms*, and *System Hardware*. We characterize the carbon footprint of AI computing by examining the model development cycle across industry-scale machine learning use cases and, at the same time, considering the life cycle of system hardware. Taking a step further, we capture the operational and manufacturing carbon footprint of AI computing and present an end-to-end analysis for *what* and *how* hardware-software design

MLSys'22

No carbonaware ML inference solution yet!

Opportunity I: Mixed Quality Models

The same model architecture can have a family of model variants with different number of parameters and sizes, yielding different accuracy levels.

Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." In International conference on machine learning, pp. 6105-6114. PMLR, 2019.

Opportunity I: Mixed Quality Models

Using mixture of model variants saves carbon without significantly impacting accuracy

Applications and corresponding model variants

Application	Dataset	Architecture	Variants
Object	MS COCO [50]	YOLOv5 [51]	YOLOv5l, YOLOv5x,
Detection	(Microsoft)	(Ultralytics)	YOLOv5x6
Language	SQuADv2 [52]	ALBERT [21]	V2-base, V2-large,
Modeling	(Stanford)	(Google)	V2-xlarge, V2-xxlarge
Image	ImageNet [53]	EfficientNet [22]	B1, B3, B5, B7
Classification	(Princeton/Stanford)	(Google)	

Opportunity II: GPU Partitioning

When GPU is underutilized, it can be partitioned into multiple individual GPU slices

Multi-Instance	
GPU (MIG)	

Slice	Compute	Memory	Cache	Max Count
7g.40gb	7 GPC	40 GB	Full	1
4g.20gb	4 GPC	20 GB	4/8	1
3g.20gb	3 GPC	20 GB	4/8	2
2g.10gb	2 GPC	10 GB	2/8	3
1g.5gb	1 GPC	5 GB	1/8	7

19 different ways to partition a GPU

Opportunity II: GPU Partitioning

More efficient usage of GPU by partitioning also saves carbon per request

Model variants and MIGbased GPU partitioning complements each other

Opportunity III: Carbon Intensity Variation

Configuring model variants and GPU partition allows us to reduce carbon emission, but this needs to exploited carefully in conjunction with the carbon intensity of the energy source

 $C_{\rm op} = I_{\rm sys} \cdot E_{\rm op}$

Operational carbon emission = carbon intensity x energy

Carbon-Aware Machine Learning Inference

How much effort we put into saving energy should depend on current carbon intensity

Low carbon intensity: aim for quality! High carbon intensity: aim for reducing carbon footprint!

How to build a carbon-aware system for ML inferences?

Clover Objectives and Key Ideas

Clover System Overview

Optimizing the dual objective of accuracy and carbon

Combined objective function $f(x^p, x^v) = \lambda \cdot \Delta Carbon + (1 - \lambda) \cdot \Delta Accuracy$ using a coefficient

Optimization

$$\max_{\boldsymbol{x}^{p}, \boldsymbol{x}^{v}} f(\boldsymbol{x}^{p}, \boldsymbol{x}^{v})$$

s.t. $L(\boldsymbol{x}^{p}, \boldsymbol{x}^{v}) \leq L_{tail}$

Carbon-Aware Formulation

Why does this optimization problem formulation make Clover carbon-aware?

Optimality between two configurations depends on the carbon intensity

How to optimize the Clover objective?

Model the configurations as a bipartite graph and apply neighbor search based on graph similarity

Edge Weight: number of instances hosted on slice type

Why model the configurations as graphs?

- Removal of configurations that yield the same objective function values
- MIG provides performance isolation only the slice type matters
- Which GPU the variant is hosted or the order of variants in a GPU changes the x^p, x^v representation, but they would eventually result in the same graph representation

Why model the configurations as graphs?

Can scale to arbitrary system size without adding vertices/edges to the graph

- The graph size only depends on number of model variant and GPU slice types
- The graph configurations are additive when adding more GPUs to the system, we simply add the edge weights of the new GPUs to current graph. But in x^p, x^v representation, we need to increase the dimensionality.

Clover Optimization Workflow I

Create one graph representation for services on all GPUs in the system

Clover Optimization Workflow II

Similarity between two graph representations are measured by graph editing distance (GED)

Clover Optimization Workflow III

Perform combinatorial optimization in graph-represented search space

Apply neighborhood search algorithm to optimize in graph space.

Clover uses Simulated Annealing.

Experimental Methodology

Clover significantly reduces carbon emission with negligible accuracy degradation

Saves carbon emission by 80% while operating under SLA latency

Clover outperforms competing schemes and is always closest to ORACLE

Clover's effectiveness comes from its superior optimization process

Clover gets closer and closer to ORACLE over time

Clover has much lower optimization overhead compared to Blover

Clover is adaptive and robust

User can control the trade-off between accuracy and carbon, and even enforcing accuracy limit

Clover is effective across geographical regions and seasons with varying carbon intensity

Clover reduces the number of GPUs needed to meet service target (embodied carbon savings)

Clover's co-location and mixed-quality serving enable reductions in number of GPUs

This is essentially reducing the carbon emission needed to produce these devices (embodied carbon)

Clover Summary of Key Contributions

Clover is the first carbon-aware machine learning inference system.

Clover actively configures the model variant mixture and GPU partition to adapt to the varying carbon intensity levels.

Clover uses a novel graph-space optimization method to significant reducing carbon emission while maintaining high service quality.

This material is based upon work supported by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract No. FA8702-15-D-0001, and United States Air Force Research Laboratory Cooperative Agreement Number FA8750-19-2- 1000. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Assistant Secretary of Defense for Research and Engineering, or the United States Air Force. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein

Contact

Baolin Li

li.baol@northeastern.edu