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Wide Range of Applications using Machine Learning
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Weather Nowcasting

4 : Statistical
1 Numerical
Inference
Hours of Runs in
simulation Seconds
https://ai.googleblog.com/2020/0 | /using-machine-learning-to-nowcast.html
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Weather Nowcasting

* U-Net weather nowcasting on SEVIR (Storm Event Imagery Dataset).

* |nference takes < 200ms on an NVIDIA T4 GPU.
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Satellite Imagery Object Detection

* xView dataset: http://xviewdataset.org/. Covers 1400 km? of earth surface.

* YOLOv3 model for real-time detection with low end-to-end latency.
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http://xviewdataset.org/

Heterogeneity in HPC Systems

* HPC systems tend to be heterogeneous.

Thve ' MeHPCC
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Previous Work in Inference Serving

* Previous work have explored various areas of ML inference serving.

> Inference Runtime

ML Inference

> Load Scaling

Throughput

> Resource Allocation

* What is missing: an inference solution that exploits heterogeneity in HPC systems.
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Latency, Throughput and Power Trade-offs

* xView object detection inference using T4 and P100 GPU:s.
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* Can we combine different GPU types to serve the queries such that:
* Latency is within a target

* Throughput or power are optimized
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Inference Serving System using Heterogeneous Hardware
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* Which hardware type to choose!

* How many devices of each type to use!
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Optimization Goals and Constraints

* Two optimization modes

Power Throughput
Latency limit | | Latency limit
Throughput target Power limit
Minimize power :Maximize throughput

* Inputs:inference latency, throughput and power of each hardware type
* Variables: integer number of devices for each type

* All optimization constraints and objectives are linear functions to the variable
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* Integer linear programming (ILP) problem




Inference Serving System

Different modes of optimization
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Optimal device types and numbers
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Evaluation - Power Saving

SEVIR inference with U-Net

Find optimal
configuration

»

Types NVIDIA T4 NVIDIA P100 | Target
Mean latency (ms) 150 137 145
Throughput (QPS) 6.7 7.3 200
Power (W) 92 133 Minimize

xView inference with YOLOv3

»

Find optimal
configuration
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Evaluation - Throughput Improvement

SEVIR inference with U-Net

Find optimal
configuration
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xView inference with YOLOv3
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Evaluation — More Device Types

* Suppose a wide variety of device types are available

* Intel Xeon Silver 4114 CPU

Power Saving Throughput Gain
* NVIDIA K80 100

48.5 00.4

* NVIDIA M60
* NVIDIA P100
* NVIDIAVIO00
* NVIDIAT4

L
=]

i

=
o
==

L

=
[=)]
[

| 244

I
[

32.5

ﬂ-.

U-Net YOLOV3 U-Net YOLOV3

]
(=]

Power Saving (as %
of PL00 Homogeneous)

M
=

Throughput Gain (as %
of P1L0O0 Homogeneous)

=it
=

=

* The optimizer finds the optimal device types (V100 and T4) and configures hardware
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Takeaways and Limitations

* HPC systems tend to be heterogeneous

for power and throughput optimizations

* Limitations of this work
* We assumed queries have fixed batch size

* Requires prior profiling of the model
served by each hardware type

* Tail latency as quality-of-service (QoS)
cannot be analytically derived

Bayesian

Optimization

Varying

* Main takeaways Check out our upcoming presentation
“Ribbon” (Request Inference Based on
Bayesian Optimization) at Supercomputing in
* Our framework exploits this heterogeneity Nov. 202!
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Questions

For further questions please email me at li.bacl@northeastern.edu
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